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Abstract 
 

Globally, the railway is considered a sustainable and energy-efficient mode of 

transport. Recently, the utilisation of road transport has increased manifold due to loss 

of trust in railway transport. The situation is further aggravated by the inefficient use 

of resources, budgetary constraints, climate change, etc. Hence, there is a need to 

increase the capacity and punctuality of railway transport.  

Therefore, this paper proposes a framework that can benefit the railway sector by 

facilitating the transition towards an energy-efficient railway system. This framework 

will achieve this by reducing unplanned stoppages, leading to increased punctuality, 

capacity, trust, and good governance.  

One of the key challenges in achieving this goal is the ability to distinguish between 

a singular point (regular designed elements, like turnouts and joints) and actual track 

defects when using vibration measurements. To address this challenge, this paper 

focuses on applying Artificial Intelligent based techniques to identify and detect the 

existence of such regular designed elements. 

This paper presents a case study of a measurement system installed in Sweden that 

provides a proof-of-concept for data fusion and data analytics using AI for improving 

the detection capability and thus increasing the prediction accuracy.   
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1  Introduction 
 

As per 2019 statistics in Sweden, the ratio of road and railway in energy usage is 30:1, 

in traffic is 7:1, and emissions are 111:1 [1]. As per 2014 statistics, the ratio of railway 

and road in cost of freight is 16:1 and passenger are 4:1. To accelerate railway as an 

energy-efficient means of transport, it is necessary to improve the punctuality and 

quality by efficient inspection and effective maintenance planning. The frequent 

defects, disturbances, and failures hinder the railway operation. Hence, there is a need 

to monitor & detect track defects and predict the occurrence of failures in the future 

for predictive maintenance.  

Track discontinuities (turnouts, transition zones, switch joints, etc.) are placed 

along a railway track and are part of the track design  [2]. Maintenance of these points, 

which are sometimes called “singular points” (SP) constitutes 8% of the total 

maintenance budget [3]. During measurements, these discontinuities can sometimes 

be confused with track defects. It is thus critical to distinguish between them to 

minimize false alarms. The main challenges are to detect precise localisation, 

especially when predictive maintenance is involved, and to keep false alarms rate to 

a low level. 

The existing inspection vehicles frequency is quite low (every 2 months). Such 

inspections are expensive and hinder normal traffic.  

Some attempts have been made at detecting singular points (SP) and distinguishing 

them from defects by using onboard sensors. Processing of data acquiring from such 

sensors can resort to several of the numerous techniques developed over the years and 

described in the literature; for instance, the Bayesian approach [2], [4], Hidden 

Markov Models [5], signature analysis [7], and numerical analysis [8]-[11]. Other 

approaches use Smartphone measurements [6] for railway track quality detection and 

experimental measurements [12], [13] for faults detection. 

Among the works surveyed, only Paixao, et al [14], combined data from track 

measurement with smartphones for detection of discontinuities. Some researchers 

applied AI and ML for detecting track discontinuities [15]-[17]. The early detection 

of track defects will reduce the probability of failures thus reducing the energy 

consumption [18]-[22].  

In addition, there are several other data sources available to distinguish between 

defects and discontinuities, such as LIDAR [23], INSAR [24], infrastructure data, etc. 

However, the root cause of defects might be also because of various reasons such as 

weather parameters. Therefore, a framework is needed to integrate all existing datasets 

through data fusion and leverage AI-powered data analytics. This will enhance 

detection capability and consequently improve prediction accuracy. The hypothesis is 

that this framework will benefit the railway sector by enabling a shift to a more 

energy-efficient railway system. It is expected to achieve this by reducing unplanned 

stoppages, leading to increased punctuality, capacity and trust. 
 

2  Methods 
 

The initial step involved consists of designing the integration of the measurement 

system. This system comprises of electrical and mechanical components, including an 

accelerometer sensor mounted on the train's axle box for vibration monitoring.  The 
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accelerometers were placed on the front axle right and rear axle left positions. Sample 

pictures of the Alstom Track Tracer, which measures vertical acceleration, are 

provided in Figure 1. 

Installing onboard equipment on a train requires a safety risk assessment following 

the 'Common Safety Method for Risk Evaluation and Assessment (CSM-RA)'. This 

assessment requires collaboration between the train manufacturer, operator, and 

owner. Upon successful completion of the risk assessment, the sensor will be installed 

on the trainset. 

 The next step involves utilizing a cloud-based digital platform called AI Factory 

for Railway (AIF/R) [25]. AIF/R offers capabilities such as acquiring, integrating, 

transforming, and processing data (in our case, vibration data). Data analysis within 

 

    

 

    

Figure 1. Sample pictures from the Alstom about the Track Tracer 
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AIF/R helps ensure railway safety, sustainability, and profitability. AIF/R's analytical 

engines and AI-based algorithms facilitate real-time data stream and complex event 

processing to support prescriptive analysis for asset health monitoring and optimized 

planning. AIF/R's integrated services can be invoked on-premises or in multiple cloud 

environments. The AIF/R architecture is built on loosely coupled storage and 

computing services (see Figure 2).  

 
AIF/R will implement digital pipelines between data providers and data 

consumers. Each pipeline represents a set of orchestrated activities aimed to extract, 

transfer, load, and process datasets between the provider and the consumer. AIF/R’s 

pipelines are configurable entities, which can utilise a palette of technologies e.g., 

communication, storage, and processing, to enable context-adaptability and fulfil the 

users’ requirements.  

The objective of the present study revolves around the determination of SP 

contacts, namely, switches and turnouts, with the help of vibration signals collected. 

Furthermore, the study can be extended in identifying track defects by determining 

the maximum vibration threshold that can help in distinguishing among the singular 

point contacts and actual track defects. Within the context of this paper, authors have 

attempted to use methods like one class support vector machines to distinguish among 

the normal operation and single point contacts wherein the classifier can be trained 

using a single class (normal operation) that can aid in determining SP of contacts when 

evaluated.  

 

3  Results 
 

This paper proposes a framework based on Condition Based Maintenance (CBM) 

principles (see Figure 3). The Open System Architecture for Condition-Based 

Maintenance (OSA-CBM) [26] defines this framework, following the ISO-13374 

standard [27] for track health monitoring. OSA-CBM serves as the foundation for 

implementing CBM through this framework, promoting a modular system design for 

interoperability between railway-specific CBM components, such as track monitoring 

sensors, data acquisition modules, and diagnostic tools. A brief description of each of 

OSA-CBM's seven layers in the context of railway track health monitoring is 

provided. 

Data Acquisition: This layer gathers data from accelerometer sensors and feeds it 

into the CBM system. 

 

Figure 2. AIF/R's conceptual architecture [25] 
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Data Manipulation: This layer preprocesses the raw vibration data for analysis. 

Common techniques include data cleaning, feature selection, extraction, and 

standardization. 

State Detection: This layer compares vibration data with predefined thresholds. If 

these thresholds are exceeded, an alert is triggered to signal potential issues. 

 

 
Figure 3. AI-based framework for predictive maintenance adapted from (OSA-

CBM) [26] (will be updated continuously) 

 

Health Assessment: This layer focuses on determining whether the health of the 

monitored track has deteriorated. It generates diagnostic records and proposes 

potential fault locations. 

Prognostics: This layer focuses on estimating the future health of the track and 

predicting the remaining useful life (RUL). 

Advisory Generation: This layer generates recommended actions based on the 

predicted future states of the track. 

Presentation: This layer provides an interactive human-machine interface (HMI) to 

visualize relevant data, information, and results obtained in previous steps. 
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This paper focuses on the work represented by the green block in Figure 3, which is 

identifying and detecting the existence of SP on the track. Future work, represented 

by the yellow blocks, will focus on differentiating between these SP and defects in 

their vicinity on the track. 

To validate this framework, a case study has been considered. The vibration data used 

in this case study came from accelerometer sensor affixed on the front right side and 

rear left side of the wagon. The vibration data was collected from the sensor for every 

0.0005s alongside the global positioning system that collected the latitude, longitude 

and speed values for every 0.2s. Two files of vibration data contains 7200001 rows 

and one column for every sensor affixed on the front right side and rear left side of 

the wagon. While the latitude, longitude and speed were collected in three different 

files with 18000 rows and one column. The collected data was synchronous and 

required preprocessing to match between the vibration data and corresponding 

latitude, longitude and speed values. The data was collected between two tram stations 

and the path utilized is presented in Figure 4. 

 
Figure 4 Anonymous Travel route of the tram  

 

The following steps were utilized to carry out the preprocessing of data and identify 

possible direction for research. 
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• Since the data was non-synchronous, a data preprocessing was required to 

synchronize the vibration data with respect to the corresponding latitude and 

longitude pair. Thus, the window for total vibration signals for every 

corresponding pair of latitude and longitude was identified as 400.  

• Post identification of the window size, an attempt was made to plot the 

vibration signals across the entire range of latitude and longitude pair. A total 

of 18000 plots were derived, which was challenging to analyse.  

• However, based on the discussion with railway experts, a threshold-based 

methodology was suggested wherein, the vibration values that fall outside 

20% of the maximum vibration value were identified and plotted along with 

the corresponding latitude and longitude values (See, Figure 5). 

• Through this process the number of plots were narrowed down to 720 plots. 

With the aid of look up tables, latitude and longitude values of switches and 

turnouts were identified and filtered from the actual data. 

• To automate the process of identification, the authors are still working on the 

process to extract the normal operating conditions from the switches and turn 

outs to train the one class support vector machine classifier. 

The plots showing normal operating conditions and abnormal operating conditions 

(either singular points or faults) are presented in Figure 5. 

 
(a) 

 
(b) 

Figure 5 Vibration plots representing (a) normal operation, (b) peaks signifying 

abnormal operation 

In future, we will apply one- class support vector machine classifier to distinguish 

among the normal and abnormal operating scenarios. One class support vector 
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machine is a type of support vector machine that has been widely adopted in the field 

of defect detection. One class support vector machine unlike conventional support 

vector machines is primarily designed for estimating the support provided for higher 

dimension distribution. One class support vector machine classifier during the process 

of training constructs a hypersphere instead of a hyperplane for the set of training 

points fed as input. Based on the creation of hypersphere, the classifier can draw the 

boundaries among the anomalies and outliers for the new data supplied post the 

training phase. The new data point is classified as normal or abnormal depending upon 

the region the data point falls i.e., inliers or outliers. Inliers are generally depicted as 

normal while outliers are depicted as abnormal. The performance of the one class 

classifier can be highly impacted with the selection of hyperparameters like nu 

(number of samples), kernel function and various associated parameters. Overall, one 

class support vector machine is a powerful tool that can provide significant insights 

to the present problem at hand. Additionally, we will also investigate other approaches 

along with SVM to determine singular points. 

 
 

 

 

4  Conclusions and future directions 
 

It has been concluded that a holistic framework based on OSA-CBM using AI based 

techniques helps to identify and detect the existence of SP on track. This framework 

can further help to differentiate between these detected track elements and track 

defects to enable predictive maintenance. Future directions involve integrating 

various data sources, including, track measurements, failure data, maintenance data, 

LiDAR measurements, satellite imagery, and climate change data. This 

comprehensive approach will enable us to compare results from diverse sources and 

develop more robust and reliable predictive models for detecting the presence of 

regular designed elements and associated defects. 
 

Acknowledgements 
 

The authors would like to acknowledge the funding provided by Energimyndigheten 

and the support from JVTC (Luleå Railway Research Center) in facilitating railway 

companies' participation within the AIF/R project framework. 

 

References 
[1]  I. Vierth, R. Karlsson, T. Linde and K. Cullinane, "How to achieve less 

emissions from freight transport in *Sweden," Maritime Business Review, vol. 

4, no. 1, pp. 4-15 2019. 

[2] E. Cme, L. Bouillaut, P. Aknin and S. Allou, "Bayesian network for railway 

infrastructure diagnosis," Proceedings of Information Processing with 

Management of Uncertainty in Knowledge-based Systems (IPMU’06) 2006. 

[3]  J.N.V. da Silva Ferreira, "No title," Long-Term Behaviour of Railway 

Transitions under Dynamic Loading Application to Soft Soil Sites 2013. 



9 

 

[4]  L. Oukhellou, E. Come, L. Bouillaut and P. Aknin, "Combined use of sensor 

data and structural knowledge processed by bayesian network: Application to 

a railway diagnosis aid scheme," Transportation Research Part C: Emerging 

Technologies, vol. 16, no. 6, pp. 755-767 2008. 

[5]  E. Côme, L. Bouillaut, P. Aknin and L. Oukhellou, "Hidden markov random 

field, an application to railway infrastructure diagnosis," IFAC Proceedings 

Volumes, vol. 40, no. 6, pp. 13-18 2007. 

[6]  A. Rodriguez, R. Sanudo, M. Miranda, A. Gomez and J. Benavente, 

"Smartphones and tablets applications in railways, ride comfort and track 

quality. transition zones analysis," Measurement, vol. 182, pp. 109644 2021. 

[7]  D.M. Steffens, "Identification and development of a model of railway track 

dynamic behaviour, 2005," 2005. 

[8]  G. Kouroussis, K.E. Vogiatzis and D.P. Connolly, "A combined 

numerical/experimental prediction method for urban railway vibration," Soil 

Dyn.Earthquake Eng., vol. 97, pp. 377-386 2017. 

[9]  H. Askarinejad and M. Dhanasekar, "A multi-body dynamic model for 

analysis of localized track responses in vicinity of rail discontinuities,", vol. 

16, no. 09, pp. 1550058 2016. 

[10] G. Kouroussis, D.P. Connolly, G. Alexandrou and K. Vogiatzis, "Railway 

ground vibrations induced by wheel and rail singular defects," Veh.Syst.Dyn., 

vol. 53, no. 10, pp. 1500-1519 2015. 

[11] D.J. Thompson, G. Kouroussis and E. Ntotsios, "Modelling, simulation and 

evaluation of ground vibration caused by rail vehicles," Veh.Syst.Dyn., vol. 57, 

no. 7, pp. 936-983 2019. 

[12] F. Espinosa, Á Hernández, M. Mazo, J. Ureña, M.C. Pérez, J.A. Jiménez, I. 

Fernández, J.C. García and J.J. García, "Detector of electrical discontinuity of 

rails in double-track railway lines: Electronic system and measurement 

methodology,", vol. 18, no. 4, pp. 743-755 2016. 

[13] R. Shafique, H. Siddiqui, F. Rustam, S. Ullah, M.A. Siddique, E. Lee, I. 

Ashraf and S. Dudley, "A novel approach to railway track faults detection 

using acoustic analysis,", vol. 21, no. 18, pp. 6221 2021. 

[14] A. Paixão, E. Fortunato and R. Calçada, "Smartphone’s sensing capabilities 

for on-board railway track monitoring: Structural performance and 

geometrical degradation assessment,", vol. 2019 2019. 

[15] F. Carlvik, "Detection of rail squats from axle box acceleration: Optimization 

of a machine learning algorithm," 2020. 

[16] C. Yang, Y. Sun, C. Ladubec and Y. Liu, "Developing machine learning-based 

models for railway inspection,", vol. 11, no. 1, pp. 13 2020. 

[17] A. Gaikwad, B. Giera, G.M. Guss, J. Forien, M.J. Matthews and P. Rao, 

"Heterogeneous sensing and scientific machine learning for quality assurance 

in laser powder bed fusion–A single-track study,", vol. 36, pp. 101659 2020. 

[18] G.M. Scheepmaker, H.Y. Willeboordse, J.H. Hoogenraad, R.S. Luijt and R.M. 

Goverde, "Comparing train driving strategies on multiple key performance 

indicators,", vol. 13, pp. 100163 2020. 



10 

 

[19] D. Basile, F. Di Giandomenico and S. Gnesi, "On quantitative assessment of 

reliability and energy consumption indicators in railway systems,", pp. 423-

447 2019. 

[20] G.L. Nicholson, D. Kirkwood, C. Roberts and F. Schmid, "Benchmarking and 

evaluation of railway operations performance,", vol. 5, no. 4, pp. 274-293 

2015. 

[21] M. Miyatake and H. Ko, "Optimization of train speed profile for minimum 

energy consumption,", vol. 5, no. 3, pp. 263-269 2010. 

[22] P. Norrbin, J. Lin and A. Parida, "Energy efficiency optimization for railway 

switches & crossings: a case study in Sweden," in World Congress of Railway 

Research: 29/05/2016-02/06/2016, 2016. 

[23] W. Zhangyu, Y. Guizhen, W. Xinkai, L. Haoran and L. Da, "A camera and 

LiDAR data fusion method for railway object detection,", vol. 21, no. 12, pp. 

13442-13454 2021. 

[24] L. Bianchini Ciampoli, V. Gagliardi, C. Clementini, D. Latini, F. Del Frate 

and A. Benedetto, "Transport infrastructure monitoring by InSAR and GPR 

data fusion," Surv.Geophys., vol. 41, pp. 371-394 2020. 

[25] R. Karim, D. Galar and U. Kumar, AI factory: theories, applications and case 

studies, CRC Press, 2023. 

[26] OSA-CBM. MIMOSA OSA-CBM – Open System Architecture for Condition-

Based Maintenance [Online]. available: https://www.mimosa.org/mimosa-osa-

cbm/. 

[27] ISO. ISO 13374, Condition monitoring and diagnostics of machine systems — 

Data processing, communication and presentation [Online]. 

 

 

https://www.mimosa.org/mimosa-osa-cbm/
https://www.mimosa.org/mimosa-osa-cbm/



