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Abstract 
 

This article focuses on the specific study of special type A turnout. Today, this type of 

track apparatus is inspected by visual reconnaissance of the tracks and using 

specialized measuring equipment to detect irregularities in the rails such as wear or 

deformation. Both the visual recognition and the measurements made are recorded in 

a control form that is then evaluated in order to determine the necessary control action. 

Thus, this article presents an algorithm based on data analysis that allows us to 

evolve towards a predictive maintenance model for special track segments. 

It comprises the following main technical objectives: Analysis of the potential of data-

driven anomaly detection methods, proposing a new approach that incorporates 

machine learning techniques through statistical pattern recognition. Diagnosis or 

evaluation of the condition of the track apparatus that allows the fault to be detected, 

identified, or located. Implementation of a valuable tool that allows the evolution of 

the maintenance strategy towards predictive maintenance management. 

Recommendation in terms of maintenance. 

 

Keywords: railway turnout, condition based maintenance, principal component 

analysis, manual inspection, visual inspection, damage detection.  
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1 Introduction 
 

In Spain, there are six types of standard turnouts depending on their length and the 

maximum permitted passage speed [1] and this paper focuses on Type A vehicles: 

maximum speed of 140 km/h and 30 km/h per deviation. 

There is a set of parameters that allow the condition of this type of switchgear to 

be measured and evaluated. These parameters, which will later be used to implement 

a statistical pattern recognition algorithm, are defined in the ADIF NAV 7-3-8.2 

standard [2]. 

 

2 State of the Art 
 

According to references [3], models used to assess track conditions for diagnostic and 

prognostic purposes can be grouped into mechanical models and data-driven models. 

Data-driven methods uncover sets of workable characteristics and decision criteria 

from observed data. These methods include statistical modelling [6... 10] and Machine 

Learning models [4] [11... 14]. The main difference between these two types lies in 

the main purpose of the analysis. Statistical models make inferences about the 

relationships between variables, while machine learning models focus on making 

accurate predictions. Both types can handle multivariate and high-dimensional data 

and extract hidden relationships between track state and measurement data. Overall, 

data-driven methods can help railway engineers better understand the condition of the 

railway track and make corresponding maintenance decisions. However, the 

performance of data-driven methods depends on the proper choice of data 

preprocessing and analysis models. 

 

 

 

Figura 1. Track change zone within a railway turnout [5] 

 

3 Case Study 

3.1 Analysis of the initial data 

This paper presents a simple tool that integrates functions for diagnosis, detection, and 

prediction of faults in track devices based on Machine Learning capable of recognizing 

hidden patterns among the variables that define the system. 
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This study has been developed for the specific study of type A switchgear. These 

devices are examined through visual inspections of the tracks and using specialized 

measuring equipment to detect possible irregularities in the rails, such as wear or 

deformation. All the information collected during the visual reconnaissance and 

measurements of the variables that determine the structural condition of the track 

apparatus is recorded on a control sheet. 

From this control form, a first list can be extracted with all the parameters or 

variables that describe the state of health of the track apparatus. This first list has been 

structured in table format and contains the forty-one variables extracted from the 

control sheet along with a brief description of what each of them measures, an 

operating threshold, and theoretical values.  

It is important to note that the range of operation contained in the description of 

each variable will be fundamental in the generation of synthetic data, to implement 

values that represent a healthy state of the track apparatus and with which the model 

can be trained. 

The objective of this phase is to define a data vector that collects the values of each 

variable, in such a way that each data vector represents a completed inspection, thus 

generating datasets or datasets with which to work in the modelling phase. But to do 

this, it will be necessary to study the optimal dimension of this vector, that is, it will 

be necessary to carry out an analysis of the variables and filter those that are essential 

and that provide the maximum information. In this way, we seek to define the system 

to be modelled in the most simplified way possible so that the implemented model is 

optimal and provides results with high precision. 

 
Figure 2. Data set including measures from manual inspection. 

 

Next, a study of each variable was carried out, analysing the characteristics, 

functionality and information provided by each of them. To carry out this study, ADIF 

Technical Instructions were used, which describe the characteristics of each of the 
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parameters that measure the condition of the track apparatus, as well as the 

methodology followed for the inspection of each of them.[1][15] 

This study revealed the existence of two relationships between the six most relevant 

parameters detailed below: wheel clearance at change, track width (wheel clearance), 

minimum spacing, track width (protection level), protection height, lane spacing and 

counter-rail. 

After carrying out an in-depth study and analysing the characteristics and functions 

of each of the variables, a first screening was carried out of some variables that, 

according to the criteria adopted in this project, did not provide useful information for 

the implementation of the model that is sought to be developed. Specifically, fourteen 

variables were discarded, all of them were track gauge measurements at multiple 

points that have been considered irrelevant to the case study of this project. 

Later, two new parameters were added to the table of variables, "Wheel clearance 

on the change on the direct track" and "Wheel clearance on the deviated track". These 

two parameters appeared on the initial control sheet but had not been considered 

because there was no data on them. However, after the study and documentation 

carried out on the parameters measured in the inspection of switchgear, it was 

concluded that these two parameters provided broadly relevant information on the 

condition of type A turnouts.  

Consequently, the table of variables was readjusted to include twenty-nine variables 

that defined a data vector of twenty-nine components.  

Even though the vector is too large to make data processing and modelling difficult, 

we moved on to the next phase in order to start programming the algorithm and 

perform the first tests with the resulting data vector. 
 

 

3.2 Methodology 

Principal Component Analysis (PCA) is an unsupervised machine learning technique 

widely used in various areas, such as data analysis, pattern recognition, computer 

vision, and bioinformatics, among others. Its main purpose is to analyse and reduce 

the dimensionality of multivariate datasets. To do this, it tries to find a new reduced 

set of variables, called principal components, that capture most of the variability 

present in the original data. 

PCA is based on the idea that multidimensional data often contains redundancy or 

correlation between variables. It seeks to transform the original data into a new 

coordinate system in which the variables must meet the condition of non-correlation 

with each other. 

As is known, principal components are obtained as linear combinations of the 

original variables, where the first principal component captures the largest possible 

variance in the data, the second principal component captures the next largest variance, 

and so on (Figure 3). 

The principal component analysis process consists of the following steps: 

• Data standardization: A transformation is applied to the data so that all 

variables have mean zero and standard deviation one.  

• Calculation of the covariance matrix: The covariance matrix or correlation of 

the standardized data is calculated, which shows the covariance or correlation 

relationships between all the variables.  
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• Principal component calculation: The eigenvectors (also called eigenvectors) 

and eigenvalues (also called eigenvalues) of the covariance matrix are 

calculated.  

• Principal component selection: A set number of principal components are 

selected to retain, usually based on the cumulative explained variance.  

• Data Transformation: The original data is projected into the new principal 

component space. To do this, the standardized data array is multiplied by the 

eigenvector array corresponding to the selected principal components. The 

result of this projection is the data transformed into the new coordinate system. 

 

 

 

 
Figure 3. Example of a New Principal Component Coordinate System 

 

 

3.3 Validation 

An example program has been developed in Python where one hundred synthetic data 

samples are generated for the twenty-nine variables that make up the data vector.  

For the sake of visibility and efficiency in programming, the synthetic data matrix 

was programmed in such a way that the rows were the variables of the data vectors, 

and the columns were the various synthetic samples.  

The "Data Frame" function of the "pandas" library transforms the array-type 

structures generated with the "NumPy" library into data frames. 

The line of research was to implement a model that would detect correlations when 

the data showed anomalous situations that foreshadowed that a failure was going to 

occur or that there was a defect in the structure. 

Taking this approach into account, a study was carried out to test the influence of 

the number of samples in a dataset on the accuracy of the PCA technique. 

The study consisted of implementing an algorithm that generated datasets 

composed of six variables and different sample sizes (10,100,1000 and 10000), 

applying the PCA technique to them and iterating this process a considerable number 

of times, with the aim of projecting the variation in the proportion of accumulated 
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variance yielded by the PCA for each sample size. Specifically, the cumulative 

proportion of the third main component was compared as it provided quite 

enlightening results. The results of the study can be seen graphically in Figure 4. 

 

 

Figure 4. Influence of Sample Size on PCA Accuracy 
 

 Figure 5 shows a comparison between a dataset containing healthy values and a 

dataset with the variable "track gauge at minimum spacing measurement point" 

synthetically modified with the growth function described above. An iterative process 

of 1000 iterations are carried out with the aim of obtaining conclusive results. 

 

 

Figure 5. Validation test of the "track gauge at the minimum spacing measurement 

point" 
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Just as no conclusions can be drawn for the first two main components, the cumulative 

proportion of the third component reflects a significant distinction between the dataset 

generated with healthy data and the dataset modified with the synthetic growth 

function. This distinction of results between the dataset in good health and the dataset 

that simulates a synthetic anomaly validates the implemented fault detection and 

prediction algorithm. 

The algorithm is also capable of detecting if there has been a specific failure in the 

needle, a fundamental element of the track apparatus subjected to high mechanical 

stress due to dynamic loads, lateral forces, impacts and vibrations. This type of fault is 

difficult to detect because the wear produced on the needle is invisible in the 

measurement of the "track width", since it would increase the "free passage of the 

wheel in the gearbox" but at the same time decrease the "minimum spacing" in the 

same proportion. This is due to the geometric conditions of the structure.  

Finally, it should be noted that the algorithm is also capable of detecting a 

simultaneous failure in two different areas of the device. This feature gives the 

algorithm greater detection capacity, making it more robust and efficient. 

 

 

 

4 Conclusions 

 
This paper has presented a tool for detecting anomalies that can reflect a failure state 

in the structure or lead to a sudden failure. This tool is an algorithm implemented with 

a statistical pattern recognition technique such as PCA, which is currently widely used 

in the field of Machine Learning with the aim of improving operational efficiency and 

helping in decision-making in any field or sector. 

The developed algorithm has great potential for application, since it allows to 

improve the maintenance plan of railway systems, whose current maintenance strategy 

consists of a procedure for the application of preventive tasks. The improvement would 

mean an evolution towards a predictive maintenance plan that would reduce the 

number of unplanned downtimes, improve safety and reduce operating costs. 

This algorithm is a verified and validated pilot tool (synthetic data) for specific 

specifications. If real data on the variables treated in this project are known, an 

exhaustive study of these variables could be carried out and the pilot tool could be 

adjusted so that it would be able to detect possible trends or hidden correlations 

between the different parameters, well in advance to be able to carry out predictive 

maintenance. 

Despite the fact that the algorithm has been designed for a specific type of special 

track segment, with certain characteristics and parameters, the methodology followed 

in the development of this project is applicable to any railway infrastructure. This gives 

the work carried out great versatility and opens up a range of new lines of research. 
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