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Abstract 
 

The passage of a high-speed train through a tunnel exposes it to substantial tunnel 

pressure waves, which are heavily affected by the length of the tunnel. Although there 

are different criteria to determine the critical tunnel length, none of them consider the 

characteristics of the maximum positive pressure experienced by the trailing carriage, 

which has been encountered in the field tests in China. To address this problem, by 

dividing the process of train-tunnel interaction into three stages based on their spatial 

relationship, and analyzing the effects of the train wave signature, four pressure states 

on the train have been summarized. In particular, for the measuring points located on 

the trailing carriage, a maximum positive pressure can be observed when the pressure 

state aligns with State 4, characterized by the train wave signature reflecting at the 

tunnel entrance and partially passing through the measuring location. Therefore a 

corresponding critical tunnel length is derived based on this time relationship. Current 

study will shed valuable insights into the aerodynamic behavior of high-speed trains 

running in tunnels and contribute to the optimization of tunnel design. 

 

Keywords: high-speed train, one-dimensional simulation method, train wave 

signature, critical tunnel length, train/tunnel aerodynamics, maximum positive 

pressure. 
 

1 Introduction 
Till the year of 2022, the number of high-speed railway tunnels in China was more 

than 4000, with a total length of more than 7000 km [1]. China has emerged as the 
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country with the highest number of high-speed railway tunnels globally. The entry of 

a high-speed train into a tunnel generates a compression wave ahead of the leading 

nose [2]. Similarly, an expansion wave forms when the trailing nose of train enters 

the tunnel. These waves propagate at the speed of sound and reflect upon reaching the 

portals of the tunnel. A complex interaction of waves arises within the tunnel due to 

the successive reflections of pressure waves [3]. These aerodynamic effects lead to 

ear discomfort of passengers and potential danger to the vehicle and tunnel facilities 

due to alternate pressure waves [4-5], which have drawn extensive attention and in-

depth research from numerous scholars. 

During the field tests on high-speed railway with 5.0m line spacing in China, it was 

observed that in certain short tunnels that don't adhere to the critical tunnel length 

formula specified in CEN 14067-5 [6]. As Fig. 1(a) shows, there is a significant 

increase in the maximum positive pressure on the trailing car as it passed by the tunnel. 

However, this phenomenon ceases as the tunnel length extends. As illustrated in Fig. 

1(a), the passage of the train through the Tunnel A with a length of 274 m corresponds 

to the increase of maximum positive pressure on the trailing car. In contrast, when the 

train travels through the Tunnel B and the Tunnel C with lengths of 492m and 820m 

respectively, no maximum positive pressure is observed on the trailing car. Mei also 

encountered this phenomenon while simulating the train passing through the tunnels 

with different lengths [7]. The increase in maximum positive pressure on the train can 

potentially affect the fatigue durability of the train structure and compromise 

passenger comfort during the ride. Hence, this paper seeks to analyze the factors 

contributing to the significant increase in the maximum positive pressure on the 

trailing car and explore the existence of a critical tunnel length based on this 

phenomenon. 

 

   
(a) (b) (c) 

Figure 1. Pressure history of the point on the trailing car for different tunnel 

lengths: (a) Tunnel A-274m; (b) Tunnel B-492m; (c) Tunnel C-820m. 

 

The remainder of this paper is organized as follows: Section 2 provides a 

description of the 1D numerical method and the validation of our code is also 

exhibited in this section using a full-scale train test conducted by Vardy and Reinke 

[8]. Taking the maximum positive pressure appearing on the trailing carriage as the 

determination criteria, the deriving process of the critical tunnel length is introduced 

in Section 3, and the validation of the formula of the critical tunnel length is also 

performed in this section. Finally, conclusive insights and deductions are summarized 

in Section 4. 
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2 Governing Equations 
In this paper, a 1D program is developed based on a compressible and unsteady 

flow model. The continuity, momentum, and energy equations are represented by Eqs. 

(1) ⁓ (3). 
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where, u ,  , p , and   are the velocity, density, pressure, and specific heat ratio of 

air, respectively, a  is the speed of sound and t  is time.  , G , and q  are the work-

transfer, friction, and heat-transfer terms. 

The airflow around the train inside the tunnel is treated as compressible, 

following the ideal gas state equation: 

 

 P RT=  (4) 

 

 

 

 

3 Critical Tunnel Length  

 
3.1 Determination of the Maximum Positive Pressure on the Trailing Carriage 

As depicted in Fig. 2, the process of a high-speed train traveling through a 

railway tunnel can be categorized into three stages based on the spatial relationship 

between the train and tunnel: train entry (Stage I), train inside the tunnel (Stage II), 

and train exit (Stage III). And three types of effects: a compression wave generated 

by the entry of the train head, friction effects during the entrance of the train body, 

and an expansion wave resulting from the entry of the train tail, lead to a steep pressure 

rise ( 1p ), a quasi-linear pressure increase ( 2p ), and a sudden pressure drop ( 3p−

), which are referred to as the train wave signature (TWS). 

 In these three stages, the impact of TWS on the pressure of measurement points 

on the train or in the tunnel exhibits distinct patterns. The lengths of the train and the 

tunnel are denoted as TRL  and TUL  respectively. The velocity of the train is 

represented by v . Furthermore, the TWS is generated with a length of TR /L M  [9] 

and propagates at the speed of sound 0c , where M  refers to the Mach number, given 

by 0/M v c=
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(a) 

 
(b) 

 
(c) 

 

Figure 2. Spatial relationship between train and tunnel: (a) Stage I: the train 

enters the tunnel (b) Stage II: the train runs in the tunnel (c) Stage III: the train 

leaves the tunnel. 

 

 

Fig. 2(a) visually portrays the spatial relationship between the train and TWS 

during Stage I. Point O is a measurement point along the trailing car, which remains 

unaffected by the compression wave originating at the entrance of the train head and 

propagating towards the exit, with all points on the train positioned behind it. The 

influence of the friction section of the TWS depends on the location of point O along 

the train. But the expansion wave stemming from the entrance of the train tail will 

invariably pass through point O, resulting in a notable pressure drop of 3p− . 

Consequently, in Stage I, the impact of TWS on point O can be represented by Eq. 

(5): 

 1

O 2 3P p p=  −  (5) 

Here,  is the coefficient that depends on the position of point O and takes a value 

between 0 and 1. When point O is near the train tail, α is equal to 0. Conversely, when 

point O is near the train head, α is equal to 1. 

Figs. 2(b) and 2(c) present the schematic diagrams illustrating Stage II and Stage 

III. When the train operates within the tunnel, the TWS undergoes propagation and 

reflection. During a certain period of time, it is acceptable to disregard the deformation 

and attenuation effects of the TWS. For measurement point O, characterized by 

pressure Op , the complete traversal of TWS through this point results in a modified 

pressure denoted as '

Op . The relationship between Op  and '

Op  can be expressed by 

Eq. (6): 

 '

1 2 3O Op p p p p + + −  (6) 
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Here, 1p , 2p , and 3p  represent the pressure variations arising from the 

compression wave, the friction section, and the expansion wave, respectively. 

The impact of multiple reflections of TWS on the pressure of point O is the 

accumulation of effects resulting from each passage of the TWS through point O. 

When the TWS undergoes n reflections, it signifies that the TWS has passed through 

point O n-1 times. By applying the principle of superposition, the effects caused by 

the initial n-1 passages of the TWS through point O can be expressed through a 

staggered series summation: 

 ( ) ( )
1

21

1 2 3

1

1

kn

O

k

p p p p
−

=

 −  + −  (7) 

where n represents the number of reflections and n = 1 indicates the first instance of 

TWS reflection at the tunnel exit. The coefficient ( )1
k

−  represents the alternating 

nature of the TWS following each reflection. 

For the n-th reflecting TWS, the pressure of point O is the same as the pressure 

situation encountered by the (n-1)-th reflecting TWS when the TWS doesn’t pass to 

the point O. When the n-th reflecting TWS passes to the point O, there are two cases:  

partial passing and complete passing, so the influence of the n-th reflecting TWS can 

be written as a segmented function. 
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The value of   is a coefficient of the position of point O, and its value is between 0 

and 1. 

As depicted in Eq. (9), 1

OP  represents the influence of TWS on the pressure at 

point O. It can be expressed as the summation of 1

Op , 21

Op  and 22

Op , in accordance with 

the principle of superposition. 
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Based on the predetermined definition, where 1n =  refers to the initial reflection 

of TWS at the tunnel exit, it can be deduced that TWS reflects at the exit when n is 

odd, and at the tunnel entrance when n is even. By considering the parity of n, Eq. 

(29) can be simplified to yield four distinct pressure states. 

State 1: When n is odd and the n-th TWS completely passes point O, the pressure 

can be approximated as 

 ( )1

O 1 21P p p − + −   (10) 

State 2: When n is even and the n-th TWS completely passes point O, the pressure 

can be approximated as  

 1

O 2 3P p p  −  (11) 



6 

 

State 3: When n is odd and the n-th TWS partially passes point O, the pressure 

can be approximated as  

 ( )1

O 1 2 3P p p p  − + −  −  (12) 

State 4: When n is even and the n-th TWS partially passes point O, the pressure 

can be approximated as  

 ( )1

O 21P p  + −   (13) 

In Eqs. (10) ⁓ (13), 1p , 2p  and 3p  are approximately of the same magnitude. 

The values of   and   fall within the range of 0 and 1. Thus, in states 1, 2, and 3, 
1

OP  is consistently negative under all conditions. Only in state 4, when the sum of   

and   exceeds 1, 1

OP  becomes positive. This implies that during the journey of a train 

through the tunnel, the pressure of point O on the train is mostly negative due to the 

influence of TWS. This occurs because initially, the expansion wave passes through 

point O, resulting in negative pressure. Subsequently, the compression and expansion 

waves alternate passing through point O. The compression wave raises the pressure 

close to zero, while the expansion wave causes a rapid decrease in pressure. Only in 

state 4 does the pressure at point O surpass zero, which corresponds to the TWS 

reflecting at the tunnel exit and partially passing through point O. 

As depicted in Fig. 2(c), during Stage III, when the train exits the tunnel, the 

TWS-II is generated. This TWS-II possesses the same intensity as the TWS-II. The 

TWS-II partially passes through point O, and its impact on point O is described by 

Eq. (14): 

 2

O 1 2P p p=  +   (14) 

where   also represents a coefficient determined by the position of point O, and its 

value ranges between 0 and 1. 

During Stage III, prior to the passage of the TWS-II through point O, the pressure 

of this point is solely influenced by the train wave TWS. As demonstrated by Eqs. 

(10) ⁓ (13), the TWS gives rise to four potential pressure states of point O. However, 

once the TWS-II passes through point O, the pressure at this point becomes influenced 

by both the TWS and the TWS-II. The influence of the TWS-II on the pressure at 

point O is deterministic, as defined in Eq. (14). Consequently, it is only when 1

OP is in 

state 4 that the superposition of 1

OP and 2

OP yields a maximum positive pressure at point 

O. 

3.2 Derivation of the Critical Tunnel Length 

As analyzed in Section 3.1, the state 4 of 1

OP  corresponds to TWS partially 

passing through point O after reflecting at the tunnel entrance. However, more 

stringent conditions are required for 1

OP  in State 4 to overlap with 2

OP . As depicted in 

Fig. 3, 1

OP  is in State 4 after the compression wave passes through point O and before 

the expansion wave does. Only TWS-II passes through point O during this time, the 

superposition will occur.  

The superposition condition mentioned above requires the compression wave of 

TWS to pass through point O when the train is leaving the tunnel, which can finally 
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lead to a specific relationship between the tunnel length and train length that hasn’t 

been characterized by relevant studies. 

 
Figure 3. The relative location of TWS, TWS-II and the train. 

Based on pre-defined parameters, the time 1T , at which the train head reaches the 

tunnel exit, is given by Eq.(15): 

 TU
1

L
T

v
=  (15) 

Similarly, the time 2T  when the train tail reaches the tunnel exit is as Eq.(16): 

 TU TR
2

L L
T

v

+
=  (16) 

After the n-th reflection, the time it takes for the TWS to reach the tunnel portals 

is ( ) TU 01 /n L c+ . It is determined that n  must be an even number based on TWS 

reflecting at the tunnel entrance. Therefore, Assuming 2n m= , where m  is a natural 

number, the time 3T  for the reflecting TWS to reach the tunnel exit is given by Eq. 

(17): 

 
( ) TU
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2 1m L
T

c

+
=  (17) 

According to the condition that the compression wave passes through point O as 

the train exits the tunnel, the relationship between 1T , 2T , and 3T  is expressed as Eq. 

(38): 

 1 2 3T T T   (18) 

The relationship between the speed of sound 0c  and the speed of the train v  is 

deduced based on the relationship between 1T  and 3T : 

 
( )

0

2 1
1

m v

c

+
  (19) 

The relationship between the tunnel length, train length, train speed, and the 

number of TWS reflections is inferred based on the relationship between 2T  and 3T : 
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Eq. (20) was derived based on the superposition condition of 1

OP  and 2

OP  when 

1

OP  is in State 4. Therefore, when Eq. (20) is satisfied as the train passes through the 

tunnel, 1

OP  and 2

OP  will superimpose, resulting in a maximum positive pressure at 

point O. When Eq. (20) takes the limit, the tunnel length corresponds to a critical 

length CRL : 

 
( )

TR
CR

0

2 1
1

L
L

m v

c

=
+

−

 (21) 

4 Conclusions and Contributions 
In the current study, considering the maximum positive pressure can be expected 

on the trailing carriage, the critical tunnel length was derived through theoretical 

analysis and 1D numerical simulations. The main results are as follows: 

(1) During a high-speed train passing through a tunnel, the pressure on the train 

experiences four states under the influence of TWS. The specific pressure state 

depends on the parity of the TWS reflection number and whether the TWS fully 

traverses the measuring position. 

(2) The pressure state corresponding to State 4 occurs when the reflection number 

is even, and the TWS partially passes through the point on the train. In this scenario, 

the superposition of TWS and TWS-II results in the occurrence of maximum positive 

pressure for the point. 

(3) Based on the relationship between the arrival time of TWS at the tunnel exit 

and the time of the leading and trailing nose of the train reaching the tunnel exit, a 

critical tunnel length associated with the maximum positive pressure on the trailing 

carriage is derived. When the tunnel length is shorter than the critical tunnel length, a 

maximum positive pressure is observed in the pressure history of the point on the 

trailing car. 
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