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Abstract 
 

Reinforced concrete, a composite material composed of concrete and rebars, is one of 

the most widely used materials in buildings. Rebar inspection at construction sites is 

recommended to mitigate potential risks associated with the omission or improper 

installation of rebars. However, current rebar inspection conducted on-site is 

predominantly manual, which is time consuming and labor-intensive. In this study, a 

new method is proposed to segment the rebar-related point cloud data from depth-

camera-captured point cloud data. This method utilizes the normal vectors of tangent 

planes at each point to segment the rebar-related portions leveraging the directional 

differences between rebar and floor-related points for effective segmentation. To 

validate this method, experiments were conducted with six 1.2 m rebars under various 

experimental conditions. The accuracy of segmentation was assessed by comparing 

the actual spacing between the rebars and the distances between the segmented rebar 

points. The results demonstrated that the proposed method can effectively segment 

rebars and accurately measure the interval instances. 
 

Keywords: rebar inspection, rebar, depth-camera, point cloud data, segmentation, 

normal vector. 
 

1  Introduction 
 

Reinforced concrete (RC) is a composite-resistant material consisting of concrete and 

rebars. The tensile strength of concrete is approximately 10% of its compressive 

strength. Without rebars, it can result in the occurrence of cracks on the tension side 
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or sudden fracture failures. Rebars mitigate the potential risks by compensating for 

the tensile vulnerabilities of concrete. Therefore, the quantity and spacing of rebars 

are critical factors in the design and construction of RC structures. Omission or 

improper installation of rebars can pose significant risks to users. It is recommended 

that thorough inspections of rebars be conducted by professional supervisors at the 

construction site [1]. However, rebar inspection currently being carried out at site is 

highly inefficient. Professional supervisors manually verify the spacing of rebars 

using tape measure and rulers, and visually confirm the quantity of rebars, making the 

process extremely labour-intensive. Furthermore, when the construction site is large, 

conducting a full inspection of the rebars becomes significantly time-consuming. To 

overcome inefficiencies, the demand for the automation of rebar inspection is 

increasing [2, 3]. 
 

Numerous studies have been conducted to utilize equipment such as cameras, light 

detection and ranging (LiDAR) sensor or drones to enable more accurate rebar 

inspection to replace the manual methods [4, 5, 6]. Kim et al. [7] conducted research 

using Terrestrial Laser Scanning (TLS) to obtain point cloud data and measure the 

diameter of rebars based on a density-based machine learning model. Additionally, 

Wang et al. [8] utilized drones to capture images of column’s rebars and proposed a 

model to count the quantity of column’s rebars using Faster R-CNN. However, while 

TLS offers the advantage of obtaining precise point cloud data, its high equipment 

cost makes practical implementation difficult. Also, using drones to shoot the 

construction site for imaging may result in inaccurate or incomplete recognition while 

matching the images to get point cloud data.  
 

 

Point cloud data are utilized to measure the spacing of rebars, which is one of the 

items in rebar inspection. A depth-camera is used to obtain the point cloud data of the 

site. While LiDAR sensor offers the acquisition of accurate point cloud data, it 

involves a time-consuming process for capturing the site and the equipment is costly. 

Measuring the spacing of rebars from raw point cloud data is nearly impossible. For 

higher accuracy, the rebar related point cloud should be segmented from the raw point 

cloud data.  
 
 

In this study, a new method was applied to segment the rebar-related parts from 

the entire depth-camera-captured point cloud data. By analysing the direction of the 

normal vectors associated with each point's tangent plane in the point cloud data, this 

study effectively segments rebar-related points. The direction of normal vectors of a 

tangent plane varies depending on the curvature of surface objects, which 

distinguishes them from points on flat surfaces, enabling easier and more accurate 

detection. To evaluate the effectiveness of the proposed method, small-scale 

experiments were conducted with six 1.2 m rebars evenly spaced at 0.3 m interval on 

a board. The results demonstrated that the method could practically segment the rebar- 

related point cloud data without the need for complex machine learning models. 

Additionally, the accuracy of measuring the rebar spacing varied depending on the 

location and the angle of shots. Optimal accuracy was achieved when the 

measurements were taken indoors from a top-down view.  
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2  Methodology 

 

2.1 Normal Vector of a Plane Method 
 

Normal vector is a line segment perpendicular to the tangent plane. As shown in 

Figure 1 (a) plane can be made with a specific 3 points. Normal vector can be 

calculated using Equation (1), taking point P1 as a reference along with points P2 and 

P3. As depicted in Figure 1 (a), the direction of the normal vector is also illustrated. 

Figure 1 (b) illustrates the normal vectors calculated for each point within a specific 

radius around a single reference point, as derived from the initial normal vectors 

shown in Figure 1 (a). This demonstrates that using the normal vectors from depth-

camera-captured point cloud data without further processing can lead to inaccuracies 

in determining their correct orientations. Consequently, as depicted in Figure 1(c), a 

new normal vector of a plane (NVP) is calculated by averaging all normal vectors 

within a designated radius around a single point. The normal vector of a plane can be 

calculated by Equation 2. 
 

  
 

Figure 1: Calculation of normal vector of plane 
 

𝑉1⃗⃗⃗⃗  ⃗× 𝑉2⃗⃗⃗⃗  ⃗

‖𝑉1⃗⃗⃗⃗  ⃗× 𝑉2⃗⃗⃗⃗  ⃗‖
 =  𝑁1  (1) 

 
𝑁1+𝑁2+𝑁3+⋯+𝑁𝑛

‖𝑁1+𝑁2+𝑁3+⋯+𝑁𝑛‖
 =  𝑁𝑉𝑃1  (1) 

 

In this study, the previously proposed NVP method is utilized to segment object-

specific points from point cloud data, which can be acquired via depth cameras or 

LiDAR sensors. Point cloud data represents the object’s surface with numerous points. 

The NVP method facilitates the determination of an object's orientation, influenced 

by the surface’s curvature. For flat surfaces, the NVP consistently points nearly 

vertically, while for curved surfaces, such as rebar, it diverges. Leveraging these 

properties, this study introduces an advanced NVP method to selectively segment 

rebar-related points from depth-camera-captured point cloud data, based on the 

orientation derived from the normal vector of a tangent plane.  
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2.2 Experiments 
 

In this study, the NVP method utilizes the divergence characteristics of normal vector 

of a tangent plane of point clouds. This new approach specifically segments rebar-

related points from depth-camera-captured point cloud data, effectively identifying 

features on curved objects. To assess the accuracy of the segmented rebar-related 

points, experiments were conducted in four distinct steps. 
 

Step 1: A depth-camera is installed to capture the point cloud data of target object. By 

considering the shooting locations and angle, the effects of environmental 

conditions were considered.  

Step 2: Crop the target object from depth-camera-captured point cloud. Unprocessed 

depth-camera-captured point cloud data contains numerous unnecessary data 

such as noise. By cropping the desired portion needs, this pre-processing step 

helps in segmenting the desired portion more clearly from the large amount of 

point cloud data. 

Step 3: The NVP method is used on the cropped point cloud data to compute the 

direction of NVP. points with diverging NVP are separated to detect the object 

related point cloud data.  

Step 4: The spacing of the rebar are determined using the segmented object-related 

point cloud data. By comparing the result with actual spacing of the rebars, 

their accuracy is assessed. 
 

This new method is evaluated through a small-scale experiment, as shown in Figure 

3 (a). Six rebars, each 1.2 m in length, are arranged as the target object on a board 

shaped as a square with both horizontal and vertical dimensions of 1.2 m. The rebars 

are positioned in three vertical and three horizontal orientations, with a spacing of 0.3 

m between each. Figure 3 (b) captures the experimental setup, which is photographed 

indoors at a 45-degree angle. 
 

  

Figure 2: (a) Target object. (b) Experimental setup. 
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3  Results 
 

In this chapter, the results of segmented rebar-related point cloud data, which were 

captured using a depth-camera, are presented. The experiments were conducted 

following the models specified in chapter 2. The depth-camera employed is the Intel 

Realsense D455 model. The outcomes of the segmentation, performed using the NVP 

method, are detailed in Section 2.1  
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Figure 3: Segmentation using NVP method under various experimental conditions 
 
 

 In Figure 3, cases 1 and 2 are distinguished by the location of the depth-camera 

captures, with outdoor and indoor settings, respectively, while targeting the same 
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target object. It is evident that the quality of the point cloud data is significantly 

influenced by lighting conditions. In case 1, which was captured outdoors, the original 

point cloud data show rippling effects on the ground, leading to less smooth results. 

Despite these challenges, the rebar was still segmented to a certain extent using the 

NVP method, although with less precision compared to case 2. In contrast, the point 

cloud data obtained indoors was much more stable, demonstrating that case 2 provide 

more accurate data. This highlights the importance of controlled indoor environments 

for obtaining reliable depth-camera-captured point cloud data. Due to the superior 

quality of point cloud data achieved through indoor shooting, both cases 3 and 4 were 

conducted indoors. The primary distinction between these cases is the perspective: 

case 3 was captured at a 45-degree angle, while case 4 was captured from a top view. 

Although rebar was clearly segmented in both cases, case 3 demonstrated better 

segmentation compared to case 4. To evaluate the accuracy of the segmented rebar-

related point cloud data, a comparison was made between the actual settings and the 

distances within the segmented point cloud data. The results of this comparison are 

summarized in Table 1 below. 
 

Case Actual Spacing Average Distance of segmented point Max 

Error D1 D2 

1 0.3 m 0.3365 m 0.3650 m 21.6 % 

2 0.3 m 0.3384 m 0.3370 m 12.8 % 

3 0.3 m 0.3357 m 0.3358 m 11.9 % 

4 0.3 m 0.3278 m 0.3035 m 9.3 % 
 

Table 1: Accuracy of segmented rebar-related point cloud data using NVP method 
 

4  Conclusions and Contributions 
 

A new approach is proposed that utilizes the normal vector of a tangent plane to the 

points forming the surface of curved objects like rebar, employing a rule-based 

method for segmentation. Historically, segmentation of images or point cloud data, 

particularly for rebar, has often relied on complex machine learning models. To 

enhance the accuracy of these models requires the creation of extensive datasets, 

which is not always feasible. In contrast, this novel method does not depend on large 

datasets and can quickly segment objects by exploiting the directionality of the normal 

vectors, which varies with the curvature of the object surfaces. This rule-based 

approach presents a significant advancement over previous machine-learning-

dependent techniques. The experimental results verified the accuracy of the 

segmented rebar-related point cloud data, considering environmental factors such as 

the location and angle of the depth camera. The quality of point cloud data captured 

indoors was found to be superior to that obtained at outdoors. Specifically, the error 

rate for outdoor captures was 21.6%, while indoor captures exhibited a significantly 

lower error rate of 12.8%. All angle measurements were taken indoors, yielding 

comparably high accuracy across the board. Among these, the most accurate 

segmentation occurred when the rebar was captured from a top view, achieving an 

error rate of only 9.3%. This indicates that both the shooting environment and the 

camera angle critically influence the precision of segmentation. A limitation of this 
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study was that segmentation was successfully performed only on rebars aligned with 

the camera's axes, specifically targeting three vertical and three horizontal rebars. 

Future research aims to enhance the accuracy of this segmentation method. 

Additionally, the error rate of 9.3% for rebar spacing, although relatively low, still 

signifies a considerable margin for improvement. Therefore, further studies are 

necessary to refine the accuracy of rebar spacing measurements. 
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