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Abstract 
 

The main aim here is the numerical solution to the Navier-Stokes equations for 

incompressible, non-turbulent, and subsonic fluid flows with some Gaussian physical 

random parameters. The stochastic finite volume method implemented according to 

the generalized stochastic perturbation technique is engaged for this purpose. It is 

based upon the polynomial bases for the PVT solutions obtained with the weighted 

least squares method algorithm. The deterministic problem is solved using the 

freeware OpenFVM in conjunction with the computer algebra software MAPLE, 

where the LSM local fittings and the resulting probabilistic quantities are computed. 

The first two probabilistic moments as well as the Shannon entropy spatial 

distributions are determined with this apparatus and visualized in the FEPlot software. 

The spatial distribution of Shannon entropy has been completed thanks to the Monte-

Carlo simulation scheme applied at the discrete volume level for each polynomial 

basis. Such an implementation of the stochastic finite volume method is applied to 

model 2D lid-driven cavity flow problem for statistically homogeneous fluid with 

limited uncertainty in its viscosity and heat conductivity. Further numerical extension 

of this technique is seen in an application of the Taylor-Newton-Gauss approximation 

technique, where polynomial approximation may be replaced with some exponential 

or hyperbolic bases.  
 

Keywords: stochastic finite volume method, Shannon entropy, Navier-Stokes 

equation, lid-driven cavity flow, weighted least squares method, Monte-Carlo 

simulation, stochastic perturbation technique.  

 

 

FIRST PASSAGE OF SHANNON 

ENTROPY COMPUTATIONS IN 

NAVIER-STOKES FLOW PROBLEMS  

 

 First Passage of Shannon Entropy Computations 

in Navier-Stokes Flow Problems 

 
M. Kamiński 

 
Department of Structural Mechanics,  

Lodz University of Technology 

Poland 

 

 

Proceedings of the Twelfth International Conference on  
Engineering Computational Technology  

Edited by: P. Iványi, J. Kruis and B.H.V. Topping  
Civil-Comp Conferences, Volume 8, Paper 6.4 

Civil-Comp Press, Edinburgh, United Kingdom, 2024 
ISSN: 2753-3239,  doi: 10.4203/ccc.8.6.4 
ÓCivil-Comp Ltd, Edinburgh, UK, 2024 



 

2 

 

 

1  Introduction 
 

Uncertainty in fluid flows is less frequently studied in computational mechanics 

[1] than for solids and structures deformations [2,3] but is usually characterized by 

decisively larger statistical scattering of physical parameters; additionally, they are 

all usually state-dependent, so that uncertainty propagation may have unpredictable 

character. Uncertainty quantification in both fluids and solids is delivered with the 

aid of different implementations of the Stochastic Finite Element Method (SFEM) 

[4], whereas analogous extensions of other discrete numerical methods are definitely 

less popular, and even scarce. It specifically concerns the Finite Volume Method 

(FVM), which seems to be more efficient than the FEM in many fluid flow problems 

described by the Navier-Stokes equations [5-8].  

Another important topic is the fact that stochastic analysis benefits from a few 

probabilistic moments and coefficients of the state functions throughout the given 

computational domain. This makes a discussion and justification of possible 

statistical correlations in-between different physical fields very difficult. An 

alternative way is the estimation (or integration) of probabilistic entropy [9], which 

is determined using discrete or continuous probability measures for the physical 

quantity of the interest. Some mathematical models applied successfully in 

probability, information theory or economics may have some importance in such an 

analysis [10].  

The main idea of this work is a utilization of the Stochastic Finite Volume Method 

(SFVM) [11] towards the determination of the spatial distribution of the Shannon 

theory for fully coupled Navier-Stokes equations relevant to the fluid flow problems, 

where heat flow may have an important contribution to the final fluid velocities and 

pressure gradients. It is based upon the Weighted Least Squares Method (WLSM) 

recovery of polynomial bases linking the PVT solutions with the physical parameters 

of the analyzed fluid. Then, some of these parameters are randomized, and their 

random polynomials serve in the stochastic perturbation method for Taylor 

expansions to calculate probabilistic moments in the given flow problem [4]. The 

same polynomials are engaged in Monte-Carlo simulations enabling Shannon 

entropy computations at the discrete finite volume level.  

The well-known lid-driven cavity flow benchmark CFD study is adopted here and 

enriched with the Gaussian heat conductivity and fluid viscosity. This case study 

enables a contrast of the first two probabilistic moments maps with these representing 

Shannon entropy. This comparison confirms several observations made in solid 

analyses, especially the fact that extreme values of the resulting coefficients of 

variation of the PVT solution coincide very well with Shannon entropy. This work 

documents additionally a coincidence of the maps for these two parameters, which 

may affect further studies in computational mechanics.     
 

2  Uncertainty in Navier-Stokes equations   
 

The system of basic equilibrium Navier-Stokes equations to be extended towards 

stochastic analysis and to be solved numerically can be written with boundary 

conditions as follows [12]: 
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State variables in Eqns. (1-5) represent the velocities iv , pressure p in the given fluid, 

the stress 
ij and strain

ij  tensors as well as the temperature θ. Conventional notation 

is used where fluid viscosity μ, heat conductivity k, heat capacity c as well as mass 

density ρ are provided. The following boundary conditions are adopted here:  

  

• for the velocity  

,;ˆ
vii vv = x  (6) 

• for the stress tensor  

,;ˆ  = xijij fn  (7) 

• for the temperature 

= x;̂  (8) 

• and for the heat flux 

.;ˆ qq
x

k =



x


 (9) 

 

Variational formulation of this problem is proposed as follows:  

 

( ) ( ) ( ).dˆd
~

d2d ,,  +=−++ 


iiiiijijjijjiii fvfvpvvvvv   (10) 

,pv i,i 0d =


 (11) 

( ) ( ).dˆˆd~dd ,,, +=++ 
 q

qqkvc iiii    
(12) 

 

It is further assumed that some physical parameters of the analyzed fluid exhibit 

Gaussian uncertainty within the given first two moments [13]. An extension of the 
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aforementioned equations to uncertainty analysis undergoes using the generalized 

stochastic perturbation technique. Let us consider for this purpose a random variable 

b and its probability density function (PDF) by pb(x) so that its expectation can be 

defined as  

( ) ( )
+

−

= dxxpxbE b  
(13) 

assuming no additional truncation in this case. Further, one can define the central 

probabilistic moment of the mth order as  

( )  ( ) ( )
+

−

−= .dxxpbEbb b

m

m  (14) 

Let us consider the following representation of the random function v(b) with respect 

to its parameter b around its mean value [4,11]:  
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where ε is a given perturbation parameter, while the nth-order variation of a random 

variable is given as follows:  

( ) ( )nnnnn bbbb 0−== . (16) 

 

Then, the expected values are sufficiently accurate with the use of the 10th order 

expansion (and for ε=1) and they are calculated as   
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(17) 

 

 

The central moments of the variable b may be simply recovered here as  

 

( )
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for any natural 1k , which is the consequence of Gaussian distribution’s symmetry. 

The expansions relevant to higher-order statistics in this methodology can be found 

in [4]. Uncertainty analysis based upon probabilistic moments and coefficients has 

some well-known limitations and may be biased with some unpredictable numerical 

errors, therefore a concept of probabilistic entropy has been proposed by Shannon [9] 

and then extended by many researchers. It states that uncertainty in the given technical 

system may be quantified by a real number h defined for this system’s response f as  



 

5 

 

 

( )( ) ( )( ) ( )( )( )
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where n stands here for the number of possible different states of this system. Because 

a coefficient of variation (CoV) was dominantly used in stochastic computational 

mechanics to discuss uncertainty importance and propagation in the given boundary 

value problem, a comparison of Shannon entropy distribution with analogous 

distribution of the CoV for the given benchmark problem is delivered in the next 

sections.   

 

 

 

3  Stochastic Finite Volume Method   
 

The following polynomial basis is proposed for the resulting temperature field in the 

presence of some uncertainty source b [4]:  

 
mT

mbDT = ,                     m=0,…,n-1; β=1,…,N. (20) 

 

where T

mD  is a rectangular matrix of the unknown polynomial coefficients, so that 

the following continuous approximation is adopted:   

 

( ) ( ) ( ) mT

miii bDxTxx   == ;      i=1,2; β=1,2,...,N, m=0,…,n-1; (21) 

 

where   are traditional deterministic shape functions and T . The temperatures’ 

gradients are similarly determined as  

 
mT

mjjj bDT   ,,, == ,                   i=1,2, m=0,…,n-1. (22) 

 

Analogous representation is proposed for the pressures   

 
mp

mbDP  = ,             
  

        m=0,…,n-1; β=1,…,N, (23) 

 

and also velocities. As it is well known, the basic idea behind the FVM is an 

application of the Ostrogradski-Gauss divergence theorem to replace the volumetric 

integrals inherent in the governing equations (10-12) with the surface integrals 

rewritten for all the finite volumes completely composing the entire computational 

domain. The contribution of each finite volume to the global equilibrium equation is 

represented by the contribution of its center as well as its outer faces. It remarkably 

differs from the FEM discretization [12,14], where a contribution of each element is 

traditionally composed of their nodal points contributions. Therefore, Eqn (10) is 

discretized in each local finite volume l as [15,16,17]  



 

6 

 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

1 1

1 1s sn n

j j j j j j j

j jl ll

l l
l l

U
U U A U A

t V V

U P g

 
    

    


 

 

= =

 
+ −    

=   −  +

 
 

 

(24) 

 

where Vl denotes the lth finite volume (in Figure 1).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 3D view of a single finite volume. 

 

 

The pressure gradient in the xi direction is calculated with the use of the Gauss 

integration scheme as [11,15]  
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where Aj is the area of the face j, nj denotes the versor of this surface directed 

outwards, and α=1,…, M. Analogous procedure is proposed for the velocities, e.g.     
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where the central differencing scheme is applied to determine the given value at the 

cell face center. The following definitions are adopted and then yield  
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Finally, the following algebraic equations system is obtained for the lth finite volume  

 

( ) ( )( ) ( ) ( )( ) ( ) U

l

n

j
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U
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s

=+
=1

. (28) 

 

The variable 
( )( )tU lj


 is the so-called velocity face flux adjacent to the finite volume l 

and its j outer plane computed at time t for the response function test indexed with α. 

The global momentum equation in the RFM-based FVM is rewritten as  
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The central differencing scheme with the coefficient χ as the (linear) interpolation 

factor connecting the given finite volume and its particular face j is introduced to 

evaluate the given scalar field at the cell face center. The continuity equation (11) is 

discretized similarly on the finite volume level as  
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(30) 

Then, the following matrix equation for pressures (for the finite volumes center 

contribution and the finite volumes face, separately): 
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where its global version is provided as  
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Finally, the SFVM discretization of the heat transfer equation is proposed as   
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(34) 

 

and ( )l  is the viscous dissipation in the lth finite volume and the αth RFM numerical 

test. Therefore, the global heat transfer equation for the SFVM yields [11]  
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Further processing of the solution towards statistical moments is performed with the 

use of the Weighted Least Squares Method.  

 

 

4  Computer simulation and discussion   
 

Let us consider a cube of unit dimensions divided into 400 equal cubic finite volumes 

containing a fluid with the following physical parameters – density 31
kg

m
 = , specific 

heat 100 J
kg K

c = , thermal conductivity   10 W
m K

E k =  and viscosity   sPaE = −110

(both CoVs equal 0.10). These two parameters are randomized separately according 

to the Gaussian distribution to distinguish the influence of their uncertainty on the 

PVT solution of the given fluid flow problem. Imposed boundary conditions for this 

cube are shown schematically in Figure 2 – the problem is restricted to 2D analysis to 

make a more apparent final visualization of the resulting state functions and their 

probabilistic characteristics. The time increment has been set as Δt=0.10 sec and the 

computations have been stopped after 10 seconds. It is clear that a composition of the 

physical parameters of the fluid is artificial, and is taken to complete this benchmark 

test, while realistic fluids analysis would be more demanding.   
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Computational analysis has been performed with hybrid usage of three different 

computer systems, namely (a) OpenFVM (series of the deterministic Navier-Stokes 

problems with varying physical parameters) [18], (b) symbolic environment of the 

mathematical package MAPLE [19] (WLSM and all probabilistic procedures), (c) the 

freeware FEPlot 3.1 [20] (probabilistic visualization).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Boundary conditions for the lid-driven cavity flow benchmark  

 

The expected values, coefficients of variation as well as Shannon entropies of the 

resulting temperatures in two tests including random viscosity (left column) and heat 

conductivity (right column) have been collected in Figures 3-5 below. It is rather 

natural and intuitively clear that expected values in both problems are equal to each 

other (Figure 3) increasing moderately from the upper to the lower surface of this 

quadratic cavity. It is due to the temperature boundary conditions presented in Figure 

2. Small boundary temperature fluctuations throughout the upper and lower edges are 

caused by the rotational flow.  

 

 
Figure 3: Expected values of the temperature in the lid-driven cavity flow test for 

Gaussian viscosity (left) and heat conductivity (right)  
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Figure 4: Coefficients of variation of the temperature in the lid-driven cavity flow 

test for Gaussian viscosity (left) and heat conductivity (right)  

 
Figure 5: Shannon entropies of the temperature in the lid-driven cavity flow test for 

Gaussian viscosity (left) and heat conductivity (right)  

 

Both coefficients of variation (Figure 4), as well as probabilistic entropies (Figure 5), 

have their spatial distributions similar to each other but completely different than a 

distribution of the expectations; this similarity holds for the same random input 

parameter, of course. Uncertainty in fluid viscosity returns extreme uncertainty of a 

temperature (largest values of the CoV and entropy) on some part of the right vertical 

edge. Analogous uncertainty in the heat conductivity has its extreme value close to 

the upper left corner, where extreme expectations have been noticed (cavity inlet). 

Quite interestingly, minimum values of the resulting temperature's uncertainty (close 

to 0, which is adjacent to the deterministic situation) form the same tree in the given 

2D domain for the fluid viscosity and almost the same path – for random heat 

conductivity. Finally, it is remarkable that larger CoVs and Shannon entropies at the 

same time are noticed while randomizing heat conductivity than fluid viscosity – it 

agrees well with engineering intuition and may serve as some verification of the 

probabilistic solution.  
 

 

5  Concluding remarks  
 

1. Shannon entropy determination for the PVT solution of the fluid flow problem 

with uncertainty solved using the Stochastic Finite Volume Method has been 

presented in this work. This approach follows fully coupled Navier-Stokes 

equations and dual probabilistic methodology based on the generalized 

stochastic perturbation method as well as the Monte-Carlo simulation 
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technique. It has been demonstrated here that the spatial distribution of 

probabilistic entropies is very close to the additional distribution of the 

coefficients of variation of the given fluid state function and may be useful in 

further uncertainty analysis for flow problems. This coincidence is observed 

for two different physical properties of the fluid, namely heat conductivity and 

viscosity, so it does not seem to be accidental. Therefore, following 

computational studies delivered in the area of linear and nonlinear solid 

mechanics, Shannon entropy would be advisable to illustrate uncertainty 

propagation in the flow problem instead of a series of the probabilistic 

moments and coefficients, which need to be studied altogether to achieve the 

same goal. It needs to be underlined that contrary to the existing research in 

computational mechanics, this study enables spatial distributions of Shannon 

entropy throughout the entire computational domain and this entropy has local 

character connected with the discrete finite volume.  

2. The numerical solution is based upon hybrid usage of the open source FVM 

program, computer algebra system for probabilistic analyses, and the LSM 

fittings as well as FEPlot software to complete a visualization of the resulting 

probabilistic moments and entropies. Further implementations should be 

focused on closer interfacing of these three systems as well as on the parameter 

sensitivity of the resulting entropy concerning the histogram partitioning, 

Monte-Carlo random trials number, input uncertainty level as well as FVM 

time and spatial discretization of the given flow problem. It may happen that 

due to the numerical error of the solution itself or erroneous definition of the 

aforementioned problem parameters' settings, Shannon entropy distribution 

computation would be inefficient. In case of any possible numerical 

discrepancies, some other probabilistic entropy models could be considered.   
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