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Abstract

Modelling the unilateral contact due to collapsible pores in porous media presents
a challenging nonlinear problem which requires convenient approximations allowing
for a tractable numerical solutions. We have derived its two-scale formulation ob-
tained by the homogenization of the fluid-structure interaction at the pore level. We
focus on periodic structures with pores distributed as fluid-filled inclusions with nar-
row parts (fissures) in which the matching contact surfaces are specified. It is demon-
strated how the fluid increases the structure stiffness. Two variational formulations
of the macroscopic problem are considered; the first one is a nonlinear elastic prob-
lem coupled with the local contact problems introduced using a variational inequality,
the second one is formulated as a two-scale contact problem with a two-scale con-
tact constraint. To reduce the computational effort, we propose an approximation of
the local contact problem solutions using master microproblems solved for selected
macroscopic deformations. For this, the sensitivity analysis framework analogical to
the one used in the shape optimization is employed.

Keywords: unilateral contact, fluid-saturated porous media, multiscale modeling, ho-
mogenization, semi-smooth Newton method, two-scale finite element method
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1 Introduction

We consider fluid-saturated poroelastic structures characterized by unilateral self-
contact at the pore level of the periodic microstructure. The unilateral frictionless
contact interaction is considered on matching pore surfaces of the elastic skeleton.
Depending on the deformation due to applied macroscopic loads, the self-contact in-
teraction alters the one between the solid and fluid phases. We derive two-scale model
of the homogenized porous medium for the disconnected porosities using the frame-
work of the periodic unfolding homogenization [2,4], cf. our previous paper [7] where
only empty pores were considered. For the closed fluid-saturated pore microstruc-
tures, a nonlinear elastic model is obtained at the macroscopic scale. The derived
problem can be adapted for structures with connected porosities admitting for flow;
this issue will be subject of a separate paper.

We propose and test new modifications of the original two-scale computational al-
gorithm reported [7] which is based on alternating micro- and macro-level steps. As a
novelty, a dual formulation of the pore-level contact problems in the local representa-
tive cells provides actual active contact sets which enables to compute consistent ef-
fective elastic coefficients at particular macroscopic points. At the macroscopic level,
a sequential linearization leads to an incremental equilibrium problem which is con-
strained by a projection arising from the homogenized contact constraint, such that the
Uzawa algorithm can be used. At the local level, the finite element discretized contact
problem attains the form of a nonsmooth equation which which is solved using the
semi-smooth Newton method [3] without any regularization, or a problem relaxation.
Numerical examples of 2D deforming structures are presented.
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Figure 1: Left: periodic lattice of the porous structure. Right: representative cell Y .
Contact surfaces Γ+/−

c , subparts on the pore surface Γfs .

2 Problem formulation

In the framework of the unfolding method of homogenization, the limit two-scale
models of the unilateral contact in porous structures with disconnected porosity is
derived using the asymptotic analysis with respect to heterogeneity scale parameter
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ε → 0. An open bounded domain Ω ⊂ IRd, with the dimension d = 2, 3, is constituted
by the solid elastic skeleton Ωε

s and by the fractures (fissures) Ωε
f which are saturated

by a viscous fluid, so that

Ω = Ωε
s ∪ Ωε

f ∪ Γε , Ωε
s ∩ Ωε

f = ∅ , Ωε
f ⊂ Ω , (1)

where Γε = Ωε
s ∩ Ωε

f is the interface; the contact is possible on Γε
c ⊂ Γε. The pores

Ωε
f and the skeleton are constituted as periodic lattices using domains Yf and Ys, re-

spectively, where Y = Ys ∪ Yf ∪ Γ is the representative unit cell.
The problem is described by a variational inequality governing the displacements

uε and pore pressure pε which is defined by constants in each closed pore Ωk,ε ⊂ Ωε
f .

The following sets are employed:

kinematic constraint: Kε = {v ∈ H1(Ωε
s)| v = 0 on ∂uΩ

ε
s , g

ε
c(v) ≤ 0 on Γε

c} ,

admissible pressure field: Qε = {q ∈ L2(Ω)| q is constant in each Ωk,ε , k ∈ Iεf} ,

where gεc is the contact gap function. The following system (2) and (3) is to be satisfied
by uε and pε:
• Solid equilibrium in Ωε

s and pore fluid mass conservation in Ωε,k
f ,

∇ · IDe(uε) + f ε = 0 in Ωε
s , σε · n = −pεn on ∂Ωε

f \ Γε
c ,∫

∂Ωε,k
f

uε · n[s] − γ

∫
Ωε,k

f

pε = 0 for each pore Ωε,k
f , k = 1, . . . , N ε .

(2)

where e(v) = (eij(v)) is the small strain tensor, γ is the fluid compressibility, ID =
(Dijkl) is the elasticity tensor, and n[s] designates the unit normal vector outward to
Ωε

s.
• Contact condition – friction-less contact on Γε

c

gεc(u
ε) ≤ 0 , σε

n ≤ −pε , gεc(u
ε)(σε

n+pε) = 0 , (3)

The variational formulation reads: Find uε ∈ Kε and the pressure pε ∈ Qε such
that (given volume forces f ε)∫

Ωε
s

IDe(uε) : e(vε − uε) +

∫
∂Ωε

f

pεn[s] · (vε − uε) ≥
∫
Ωε

s

f ε · (vε − uε) , ∀vε ∈ Kε ,∫
∂Ωε

f

qεuε · n[s] − γ

∫
Ωε

f

pεqε = 0 ∀qε ∈ Qε .

(4)

3 Homogenized porous medium with self-contact at the
pore level

For the structures with fluid saturated disconnected pores, the homogenized limit prob-
lem attains the same form as the one derived for the structures without fluid (empty
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pores), although the effective tangent stiffness modulus involved in the incremental
formulation reflects the fluid action. Henceforth, we focus on the model describing
the quasistatic response of the homogenized medium with disconnected pores. We
denote by u0 and p0 the macroscopic displacement and pressure fields, respectively,
and by u1 the fluctuating part of the micro-displacements, being Y -periodic functions
in the micro-variable y ∈ Y . The truncated asymptotic expansion is introduced using
the unfolding operator Tε(), see [1], for x ∈ Ω and y ∈ Y ,

Tε(uε(x)) = u0(x) + εu1(x, y) + ε2(. . . . (5)

Admissible two-scale displacements must satisfy u1 ∈ KY (∇ũ0) where the set KY is
defined using the gap function gYc (u1,∇u0) = [∇u0ŷ + u1 − ŷ]

Y
n ≤ 0 with ŷ ∈ Γc,

where Γc ⊂ Γfs is the contact surface, a part of the pore wall Γfs . The limit two-scale
problem with quasistatic flow is derived from Problem (4). It involves Local problems
defined in Y for a.a. x ∈ Ω, and the Global problem defined in Ω.

The Local problem of the solid in Ys describes its response to applied macroscopic
strain ex(u0), being constraint by the unilateral contact on the pore contact surface
Γc ⊂ Γfs and by the fluid mass conservation in deformed pores Ỹf ,

∼
∫
Ys

IDey(u1 +Πijexij(u
0)) : ey(v − u1) + p0 ∼

∫
Ys

∇y · (v − u1) ≥ 0 , ∀v ∈ KY (∇u0) ,

whereby ϕf∇x · u0− ∼
∫
Ys

∇y · u1 + γϕfp
0 = 0 ,

(6)

where ū := Πijexij(u0) is the affine part of the microscopic displacement field in Ys

produced by the homogeneous strain ex(u0) with Πij
k = δikyj . For the global problem

in Ω, two formulations are possible. We first describe the straightforward consequence
of the two-scale limit problem coupling the displacements u0(x) and u1(x, y) through
the static equilibrium∫

Ω

σ0(u0,u1) : ex(v0)−
∫
Ω

p0ϕf∇x · v0 =
∫
Ω

f̄ · v0 ∀v ∈ U0(Ω) . (7)

Although p0(x) is the macroscopic pore pressure, it can be considered as the micro-
scopic variable. Therefore, p0 can be eliminated, thus, yielding a nonlinear elastic
constitutive law for the homogenized solid. The Local sub-problem (LP) reads: Given
∇u0(x) at x ∈ Ω, find u1(x, ·) ∈ KY (∇u0),

∼
∫
Ys

IDey(u1 +Πijexij(u
0)) : ey(v − u1)

+
1

γϕf

(
∼
∫
Ys

∇y · u1 − ϕf∇x · u0

)
∼
∫
Ys

∇y · (v − u1) ≥ 0 ,

(8)

for all v ∈ KY (∇u0). By the consequence of (7), the Macroscopic – global problem
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(GP) is formulated, as follows Find (u0,u1) ∈ U0(Ω)×L2(Ω;H1
#(Ys)) which satisfy∫

Ω

σ0(u0,u1) : ex(v0)−
1

γϕf

∫
Ω

(
∼
∫
Ys

∇y · u1 − ϕf∇x · u0

)
ϕf∇x · v0 =

∫
Ω

f̄ · v0 ,

(9)

for all v0 ∈ U0(Ω). The Sobolev space H1
#(Ys) contains Y -periodic functions, applied

also in the “sliding bilateral contact” set defined below.

3.1 Macroscopic Linear (ML) subproblem

The two-scale algorithm proposed in [7] can be adapted. It is based on the linearization
of the stress σ0(u0,u1), leading to an incremental formulation of the global equilib-
rium arizing from (9). The macroscopic increment δu0 driven by the out of balance are
computed with the “fixed sliding contact” constraint due to active contact sets Γ∗

c(x)
(in the context of a space-discretized formulation, local true contact surfaces are iden-
tified at all points x ∈ Ω where the microscopic problems are solved). The effective
macroscopic tangent stiffness can be defined in terms of perturbations (δu0, δu1) such
that Γ∗

c(x) is not modified. In other words, the affine displacement field induced in
Y (x) by the strain ex(δu0(x)) is compensated by δu1(x, y) with y ∈ Y (x), such that
the active contact associated with the “master surface” is not changed, see [7] for de-
tails. For a displacement field ū := Πijexij , induced by any (small) macroscopic strain
ex, let us introduce the set of admissible displacement perturbations,

V0(ū, Y (t)
s , x) = {v ∈ H1

#(Y
(t)
s )| [v + ū](t)n = 0 on Γ(t)

∗ (x)} . (10)

The characteristic microscopic response of the linearized “sliding contact” microstru-
ture is introduced: Find wij(x, ·) ∈ V0(Π

ij, Ys, x), i, j = 1, . . . , d which satisfy

∼
∫
Ys

IDey(wij +Πij) : ey(v) +
1

γϕf

(
∼
∫
Ys

∇y · wij − ϕfδij

)
∼
∫
Ys

∇y · v = 0 , (11)

for all v ∈ V0(0, Ys, x). The global incremental problem is based on the elastic con-
stitutive law involving the tangent stiffness IDH = (DH

ijkl) computed by the following
symmetric expression of DH

ijkl,

DH
ijkl = aYS

(
wij +Πij, wkl +Πkl

)
+

1

γϕf

(
∼
∫
Ys

∇y · wij − ϕfδij

)(
∼
∫
Ys

∇y · wkl − ϕfδkl

)
.

(12)

Incremental formulation. We assume the current approximation ũ0 of the macro-
scopic displacement field, so that ũ1 is computed using the local contact problems
(8), yielding ũ1(x, ·) the local microstructure deformations, hence the true contact
set for each microstructure Ys(x). Small perturbations δu0 and δu1 are related by
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the “linearized” contact problem which yileds the corrector problem (11), whereby
δu1 = wijexij(δu0). Let r(v0) be the macroscopic out-of-balance functional,

r(v0) :=
∫
Ω

f · v0 +
∫
∂σΩ

b · v0 −
∫
Ω

σ̃tot : ex(v0) , (13)

where σ̃tot is the current approximation of the total stress σtot = σ0−p0ϕfI evaluated
for the ũ0; note that p̃0 is determined for ũ0 by virtue of (6)2. The perturbations
δu0 ∈ U(Ω) satisfy∫

Ω

IDHex(δu0) : ex(v0) = r(v0) , ∀v ∈ U0(Ω) . (14)

Then the stress is updated, σtot := σ̃tot(ũ0)+δσtot with δσtot := IDHex(δu0) involv-
ing the tangential stiffness effective modulus IDH . The displacement field for the new
iteration is updated, ũ0 := u0 + δu0 in Ω. Solving of the microproblem (8) and the
macro-problem (14) repeats until the convergence is attained, i.e. ∥δu0∥ is sufficiently
small.

3.2 Macroscopic Contact (MC) method

The direct convergence result yields a variational inequality involving both u0 and u1.
Therefore, it is not obvious to retain the “contact problems” to be solved at the micro-
level only. In [8], the so-called “Macroscopic contact method” has been proposed and
tested on microstructures with drained pores. Here we apply this method to solve the
homogenized contact problems for fluid-saturated porous structures Using the local
true contact surfaces Γ∗

c(x) determined at microstructures M̃Y (x), the following sets
are introduced,

ΣΓ = {(x, y) ∈ Rd × Rd| y ∈ Γc ⊂ Γ∗
c(x), x ∈ Ω} ,

K̃E
Ω = {v ∈ U0(Ω)| g̃Ec (v) ≤ 0 a.e. in ΣΓ} ,

(15)

noting that ΣΓ is a subset of the Cartesian product Ω × Γc Macroscopic equilibrium
involving increment δu ∈ U0(Ω), and the “micro-macro Lagrange multiplier”, λ,
describing the “two-scale” contact stress on ΣΓ, must satisfy∫

Ω

(
IDEex(δu) + P̂

∗
λ̂
)
: ex(v) =

∫
Ω

f · v −
∫
Ω

σ̃ : ex(v) , ∀v ∈ U0(Ω) , (16)

involving adjoint P̂
∗

of the gap operator P̂ defined on the two-scale surfaces ΣΓ = Ω×
Γc and a consistent tangent IDE , and the projection, attaining the form of a nonsmooth
equation:

0 = max{−λ̂, P̂ : ex(û) + s̃} a.e. in ΣΓ .

Tensor IDE is introduced using (11) and (12), however, the prescribed sliding contact
is restricted to a subdomain of the true contact surfaces. It means that the unilateral
contact is verified by δu in the global step involving all the microstructures (in the
context of the FE discretization) for “nearly semiactive” parts of the contact srfaces
Γc(x) Contact stress ∼ λ̂ defined on ΣΓ.

6



4 Numerical examples

To illustrate the derived homogenized model of the porous fluid saturated material
with self-contact at the pore level, we consider three issues. The first one is related to
the effective stiffness of the deforming elastic material depending on the deformation.
The other two are related to the solution of the two-scale nonlinear problem; the two
methods, as introduced in sections 3.1 and 3.2 are presented in examples with two dif-
ferent macroscopic loadings. Finally, some perspective of the model order reduction
in terms of reducing the number of local problems to be solved are illustrated.

4.1 Tangent stiffness

The tangent stiffness IDH(x, e0) characterizes the deformed microstructure at macro-
scopic positions x ∈ Ω. We recall that the nonlinearity of the effective elasticity is
due to the unilateral contact constraint, although the solid deformation in Ys is driven
by the linear kinematics and the linear Hooke’s law. The numerical example shows
the verification of the stiffness components DH

ijkl using an approximation based on the
effective stress finite differences.

A microscopic cell with circular inclusion was used (see Fig. 3). Its solid part was
modelled using Young’s modulus E = 2.3GPa and Poisson ratio ν = 0.3 under the
assumption of plane strain while the bulk modulus of the fluid was K = 2.2GPa.
The freely chosen parameters of a comparison are: macroscopic strain e0, its variation
∆e0, and a small scalar δ > 0.

The slopes of the stress-strain curves are evaluated using tangent stiffness (TS), see
(12), and finite differences (FD) computed using the macroscopic stress based on the
local problem solution, see (8),

dσTS = DH
ijkl ∆e0kl , dσFD =

1

2

σ(e0 + δ∆e0)− σ(e0 − δ∆e0)

δ
. (17)

The slopes dσFD and dσSA agree for each component.
Fig. 2 shows the results of these comparisons. The quantities shown are: stress

components (σ11, σ22, and σ12) and fluid pressure (p0), slopes of stress components,
and true contact boundary Γ∗ relative to contact boundaries Γ+ and Γ−. The parame-
ters were chosen as:

e0 = 0 , ∆e0 =

[
−0.3 0
0 1

]
, δ ∈ ⟨−0.05, 0.05⟩ . (18)

4.2 Solving the macroscopic problems

Solutions of two global problems are presented here, the following definitions apply
to both. The macroscopic domain is a square, x ∈ Ω = [0, 1] × [0, 1], meshed by
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Figure 2: Comparison of tangent stiffness according to (17) with macroscopic strain
prescribed as in (18). Stress components (a), their slope (b), and true contact
boundary (c); left: dry pores, right: fluid-filled pores.

an array of 4 × 4 four-node quadrilateral elements with bilinear approximation of
displacement.The subsets used for defining boundary conditions were:

Γbottom = {x| x1 ∈ [0, 1] , x2 = 0} ,

Γtop = {x| x1 ∈ [0, 1] , x2 = 1} .
(19)

The macroscopic linear (ML) and the method of macroscopic contact (MC) were com-
pared.

4.2.1 Uniaxial compression

All displacements are fixed at the bottom edge, and a vertical traction is prescribed at
the top edge:

u1 = u2 = 0 on Γbottom ,

f = [0,−0.20GPa]T on Γtop .
(20)

The microscopic domain Y is shown in Fig. 3.
Convergence parameters of the global algorithms are shown in Fig. 4. The method

of macroscopic contact (MC) converges faster in terms of both residual r and step
length δu. The non-zero values of λ appear at steps in which the contact term of MC
was non-zero, i.e. the state of contact changed in that increment.
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Figure 3: Finite element meshes of the microscopic periodic cell; (a) uniaxial, (b) with
circular inclusion.
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Figure 5: Uniaxial compression: effective stress (vertical component) and number of
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Figure 6: Uniaxial compression: micro-solutions along the D-E line.

In Fig. 5, the macroscopic response is illustrated in terms of the spatial distribution
of effective stress, fluid pressure, and the contact status in terms of number of con-
tact nodes. Solutions of selected micro-problems is displayed in terms of the stress
components in Ys and contact tractions on Γc, see Fig. 6.

4.2.2 Cantilever bending

All displacements are fixed at the bottom edge, and a horizontal traction is prescribed
at the top edge:

u1 = u2 = 0 on Γbottom ,

f = [0.011GPa, 0]T on Γtop .
(21)

The microscopic domain Y is shown in Fig. 3.
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Figure 8: Cantilever bending: micro-solutions along the D-E line.

Convergence parameters of the global algorithms are shown in Fig. 4. Again, the
method of macroscopic contact (MC) converges faster in terms of both residual r and
step length δu. In this case, however, λ remains zero in all steps.

Fig. 7 shows spatial distribution of effective stress, fluid pressure, contact status in
terms of number of contact nodes, whereas solutions of selected micro-problems are
illustrated in Fig. 6, where the stress components and contact normal stress is depicted.

4.3 Approximation in strain space

Problems described above demonstrate the typical feature of the nonlinear two-scale
problem leading to the well-known “FE-square” complexity of the numearical algo-
rithm. A possible model order reduction is to reduce the number locally solved contact
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Figure 9: Approximation of the vertical component of effective stress at e12 = 0.

problems in Ys for the specific macro-strains, e(u0(x)) at x ∈ Ω.
A piecewise linear approximation in strain space has been used to reduce the com-

putational cost of solving the global problems. The above described problem of can-
tilever bending was solved by the ML algorithm with the values of effective stress and
tangent stiffness being approximated. Solutions of local problems were pre-computed
on a grid spanning the selected interval (see Fig. 9) [e011, e

0
22, e

0
12]

T ∈ I11×I22×I12 with
I11 = I22 = I12 = ⟨−0.02, 0.02⟩. The grid had 7 × 7 × 5 points, which leads to 245
local problems. Since a single iteration of the global problem requires 64 local prob-
lems to be solved, the approximation becomes advantageous after four iterations. An
adaptive or more informed strategy of creating the approximation would most proba-
bly reduce the total number of local problems and decrease the approximation error.
The global results, however, agree well with the full solution in terms of displacement
and residual, see Fig. 10.

5 Concluding remarks

We have presented the model of poroelastic fluid saturated medium with unilateral
contact on deforming pore surfaces. The model was derived by the homogenization
method, assuming local periodicity of the microstructure and disconnected pores, so
that flow in the individual, mutually separated pores is not considered. As expected,
the fluid-filled pores lead to more constrained setting, which effectively stiffens the re-
sponse in both compression and tension compared to dry pores. Two solution methods
were proposed and tested to solve the two-scale (global) problem. The MC global al-
gorithm achieves a faster rate of convergence in general, as compared to the ML one.
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Figure 10: Horizontal component of macroscopic displacement and the difference be-
tween full solution (ML) and the solution based on piecewise linear ap-
proximation of local results.

This effect is more pronounced with fluid-filled pores. The approximation in strain
space offers a substantial reduction in computing time at the cost of approximation
error. However, the approach presented here is in an early stage of development and
significant improvement is expected. The further research will focus on this issue of
the “model order reduction”. Besides, the algorithms will be implemented for 3D mi-
crostructures which enable for flow in the connected porosity. The proposed model is
convenient also to describe mechanics in fractured media, or debonding in composite
materials, cf. [5]. To solve the contact problem at the microlevel, methods used in the
contact mechanics can be employed, see e.g. [6].
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