
GPU-Accelerated Iterative Refinement Based
on Induced Dimension Reduction

Y. Jiang1, F. Magoulès2, X. Wang1 and Q. Zou1

1 School of Science, Beijing University of Posts and
Telecommunications, China

2 CentraleSupélec, Paris-Saclay University, Gif-sur-Yvette, France

Abstract

The resolution of large scale linear systems is still a significant challenge in scientific
computing. In this paper we consider the induced dimension reduction method and
iterative refinement scheme for solving nonsymmetric linear systems. We formulate
an IR outer scheme based on the IDR inner solver and perform a numerical study of
its finite precision behavior. The algorithm is implemented on a graphics processing
unit using the CUDA programming tool.

Keywords: induced dimension reduction, iterative refinement, mixed precision, Krylov
subspace methods, linear systems, parallel computing.

1 Introduction

Krylov subspace methods are the standard choice for solving large scale linear systems

Ax = b, (1)

where A ∈ RN×N is a nonsymmetric matrix and b ∈ RN is a nonzero vector. For
instance, the generalized minimal residual (GMRES) algorithm [1,2] and biconjugate
gradient stabilized (BICGSTAB) algorithm [3] are widely used and are successful in

1

Proceedings of the Twelfth International Conference on
Engineering Computational Technology

Edited by: P. Iványi, J. Kruis and B.H.V. Topping
Civil-Comp Conferences, Volume 8, Paper 5.4

Civil-Comp Press, Edinburgh, United Kingdom, 2024
ISSN: 2753-3239, doi: 10.4203/ccc.8.5.4
ÓCivil-Comp Ltd, Edinburgh, UK, 2024

practice for a wide variety of problems. For more discussion about Krylov subspace
methods, we refer the reader to [4, 5]. The induced dimension reduction (IDR) algo-
rithm is originally proposed in 1980 by Wesseling and Sonneveld [6], and improved
in 2009 by Sonneveld and van Gijzen [7] to the IDR(s) variant.

The role of iterative refinement (IR) in solving linear systems (1) has received in-
creased attention across a number of disciplines in recent years [8–10]. It is used to
improve a computed solution x̂ of a linear system Ax = b by computing the resid-
ual r = b − Ax̂ in higher precision ū (such as ū = u2), solving Ad = r in working
precision u, and updating x̂ ← x̂ + d with precision u. The IR scheme can date back
to the pioneering work of Wilkinson [11] in 1948. At that time dot products were of-
ten accumulated at twice the usual precision with hardware support. With nearly two
decades of neglect, IR has received renewed attention since 2000, especially in the last
ten years due to the theoretical and hardware breakthroughs; see [10] for more details.
We also refer the reader to [12–14] for more recent development on this subject.

Traditionally, the inner solver is performed with LU factorization. In the paper of
Carson and Higham [8,9] they prove that using iterative scheme may show advantages
in terms of stability; see also [15] for more discussion on stability analysis. Here we
perform the IR scheme based on IDR(s) iterations, denoted for simplicity by IDR-
IR(s), with working precision u and residual precision ū. We compare different u and
maximum IDR iterations in GPU environment and illustrate the convergence behavior.

2 IDR-based iterative refinement

The IDR(s) algorithm defines a sequence

Gj = (I − ωjA)(Gj−1 ∩ S), j = 1, 2, . . . , (2)

where G0 is the full Krylov subspace

KN(A, v0) = span {v0, Av0, . . . , AN−1v0},

for some nonzero vector v0, and S is some subspace of CN such that C and G0 do
not share a nontrivial invariant subspace of A. Here ωj denotes some nonzero scalars,
usually chosen as the value that minimizes the norm of residual.

The IDR(s) process is shown in Algorithm 1. Let rn = b − Axn be the residual.
Since rn can be expressed as Φn(A)r0 for some nth degree polynomial Φn, we have

rn+1 = rn − αAvn −
s∑

l=1

cl∆rn−l,

where s denotes the depth of the recursion, vn is any computable vector in Kn(A, r0)
but not in Kn−1(A, r0), and ∆rn = rn+1 − rn. Then

A∆xn = −∆rn = [Φn(A)− Φn+1(A)]r0

2

Algorithm 1: The IDR(s) algorithm.
Data: A ∈ CN×N ;x0, b ∈ CN ;P ∈ CN×s; ε ∈ (0, 1);MAXIT > 0.
Result: xn such that ∥b− Axn∥ ≤ ε.

1 Calculate r0 = b− Ax0;
2 for n = 0 to s− 1 do
3 v = Arn;ω = (vHrn)/(v

Hv);
4 ∆xn = ωrn; ∆rn = −ωv;
5 rn+1 = rn +∆rn;xn+1 = xn +∆xn;
6 end
7 ∆Rn+1 = (∆rn . . .∆r0);∆Xn+1 = (∆xn . . .∆x0);
8 n = s;
9 while ∥rn∥ > ε and n < MAXIT do

10 for k = 0 to s do
11 Solve c from PH∆Rnc = PHrn;
12 v = rn −∆Rnc;
13 if k = 0 then
14 t = Av;
15 ω = (tHv)/(tHt);
16 ∆rn = −∆Rnc− ωt;
17 ∆xn = −∆Xnc− ωv;
18 else
19 ∆xn = −∆Xnc− ωv; ∆rn = −A∆xn;
20 end
21 rn+1 = rn +∆rn;
22 xn+1 = xn +∆xn;
23 n = n+ 1;
24 ∆Rn = (∆rn−1 . . .∆rn−s);
25 ∆Xn = (∆xn−1 . . .∆xn−s);
26 end
27 end

The IDR process ensures that the residual rn lies in the subspaces Gj , where j is non-
decreasing with increasing n. The system (1) will be solved in exact arithmetic after
at most N dimension reduction steps. Moreover, the relation (2) can be implemented
by enforcing

Gj = (I − ωjA)(Gj−1 ∩N (PH)), j = 1, 2, . . . ,

where
P = [p1, . . . , ps]

is a rank-s matrix. We do not pursue the background of IDR(s) and refer the reader
to [7] for more details.

3

Algorithm 2: Iterative refinement.
Data: Nonsingular matrix A ∈ CN×N ; b ∈ CN .
Result: Approximate solution x̂ to Ax = b.

1 Solve Ax0 = b;
2 for i = 0 : imax − 1 do
3 Compute ri = b− Axi in precision ū; store in precision u;
4 Solve Adi = ri;
5 Compute xi+1 = xi + di;
6 if converged then
7 return xi+1, quit.
8 end
9 end

On the other hand, the IR scheme is shown in Algorithm 2. Here we use Algo-
rithm 1 to solve Adi = ri and try different precisions to investigate the numerical be-
havior. We perform experiments with IDR-IR(s) on graphics processing units (GPUs).
We test two precisions u = 2−24 and u = 2−53, namely, single and double precisions,
respectively, and fix the residual precision ū = u2 to evaluate the convergence behav-
ior of our implementation of the IDR-IR(s) algorithm. To gauge the benefits of using
GPUs to accelerate the resolution, we use NVDIA GeForce RTX3060 Laptop GPU
with 12GB memory, with NVIDIA’s CUDA version 11.6. We use a set of large-scale
sparse matrices extracted from the SuiteSparse matrix collection [16] to obtain the
numerical results. Recall that only the calculation of residuals is done with higher
precision ū.

In all the tests we set 30 as the maximum number of iterative refinement steps since
we observe that the number of iterative refinements is generally not too high. For the
inner IDR(s) process, we vary the maximum number of iteration steps to observe
its effect on the accuracy and the number of iteration refinements. The convergence
threshold is fixed as 10−8. From Figures 1–4 we can see that when the maximum
number of IDR(s) iterations is limited to 5 or 10, the solution fails to converge even
when the number of iterative refinements is large. On the other hand, when the number
of IDR(s) iterations is sufficient, the accuracy of the approximate solution is reduced
by an order of magnitude of 10−5 compared to the case when u is in double precision.

3 Concluding remarks

This paper investigates the iterative refinement based on the induced dimension re-
duction process. Actually this is a preliminary study of a large project, which ex-
ploits the effect of approximate computing on parallel algorithms. For instance, pre-

4

Figure 1: Performance of IDR-IR(s) with MAXIT = 5 and u = 2−24.

Figure 2: Performance of IDR-IR(s) with MAXIT = 10 and u = 2−24.

conditioning, mixed precision, and randomization are widely used techniques for ill-
conditioned problems. At the same time, one often implements s-step, pipelined, or
hierarchical variants on GPUs to accelerate the resolution of linear systems. Further-
more, both deterministic and probabilistic rounding error analysis approaches can be
used for ensuring the stability of a numerical algorithm. A combination of approxi-

5

Figure 3: Performance of IDR-IR(s) with MAXIT = 30 and u = 2−24.

Figure 4: Performance of IDR-IR(s) with MAXIT = 50 and u = 2−24.

mation, parallelization, and rounding error analysis appears to be a successful stack of
techniques in the exascale era. In the future we will investigate the communication-
reducing IDR variants and pursue the optimal implementation on GPUs. We will also
exploit practical preconditioners adapted to the parallel algorithms. Finally for the
entire elements we will study the mixed precision technique and try to formulate a

6

Figure 5: Performance of IDR-IR(s) with MAXIT = 5 and u = 2−53.

Figure 6: Performance of IDR-IR(s) with MAXIT = 10 and u = 2−53.

nontrivial scheme to further accelerate the algorithms.

7

Figure 7: Performance of IDR-IR(s) with MAXIT = 30 and u = 2−53.

Figure 8: Performance of IDR-IR(s) with MAXIT = 50 and u = 2−53.

Acknowledgements

This work was partly funded by National Natural Science Foundation of China under
grant numbers 12101071, 12171051 and 12171052, by Fundamental Research Funds

8

for the Central Universities under grant number 2023ZCJH02, and by French National
Research Agency as part of project ADOM, under grant number ANR-18-CE46-0008.

References

[1] Y. Saad, M.H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems”, SIAM Journal on Scientific and
Statistical Computing, 7, 856-869, 1986.

[2] Q. Zou, “GMRES Algorithms over 35 Years”, Applied Mathematics and Com-
putation, 445, 127869, 2023.

[3] H.A. van der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging Variant of
Bi-CG for the Solution of Nonsymmetric Linear Systems”, SIAM Journal on
Scientific and Statistical Computing, 13, 631-644, 1992.

[4] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia,
2003, 2nd edition.

[5] G. Meurant, J. Duintjer Tebbens, Krylov Methods for Nonsymmetric Linear Sys-
tems: From Theory to Computations, Springer, Cham, 2020.

[6] P. Wesseling, P. Sonneveld, “Numerical Experiments with a Multiple Grid and
a Preconditioned Lanczos Type Method”, Approximation Methods for Navier-
Stokes Problems, Springer, 543-562, 1980.

[7] P. Sonneveld, M.B. van Gijzen, “IDR(s): A Family of Simple and Fast Algo-
rithms for Solving Large Nonsymmetric Systems of Linear Equations”, SIAM
Journal on Scientific Computing, 31, 1035-1062, 2009.

[8] E.C. Carson, N.J. Higham, “A New Analysis of Iterative Refinement and Its
Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems”,
SIAM Journal on Scientific Computing, 39, A2834-A2856, 2017.

[9] E.C. Carson, N.J. Higham, “Accelerating the Solution of Linear Systems by Iter-
ative Refinement in Three Precisions”, SIAM Journal on Scientific Computing,
40, A817-A847, 2018.

[10] N.J. Higham, T. Mary, “Mixed Precision Algorithms in Numerical Linear Alge-
bra”, Acta Numerica, 31, 347-414, 2022.

[11] J.H. Wilkinson, “Progress Report on the Automatic Computing Engine”, Na-
tional Physical Laboratory, Teddington, 1948.

[12] P. Amestoy, A. Buttari, N.J. Higham, et al., “Combining Sparse Approximate
Factorizations with Mixed-precision Iterative Refinement”, ACM Transactions
on Mathematical Software, 49, 4:1-4:29, 2023.

[13] E.C. Carson, N. Khan, “Mixed Precision Iterative Refinement with Sparse Ap-
proximate Inverse Preconditioning”, SIAM Journal on Scientific Computing, 45,
C131-C153, 2023.

[14] P. Amestoy, A. Buttari, N.J. Higham, et al., “Five-Precision GMRES-Based It-
erative Refinement”, SIAM Journal on Matrix Analysis and Applications, 45,
529-552, 2024.

9

[15] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadel-
phia, 2002, 2nd edition.

[16] T.A. Davis, Y. Hu, “The University of Florida Sparse Matrix Collection”, ACM
Transactions on Mathematical Software, 38, 1:1-1:25, 2011.

10

