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Abstract

SMALE is an efficient algorithm for solving quadratic programming problems with
simple bounds and linear equality constraints. There are two variants of this method:
one updates the parameter for precision control of an inner solver by a factor less
than one (the preferable variant, as it does not change the Hessian via penalty update),
and the other updates the penalty by a factor greater than one (resulting in a lower
number of outer iterations and fewer Hessian multiplications in the inner solver). We
use the MPRGP algorithm as an inner solver for solving bound-constrained quadratic
programming problems.

We introduce a new theoretically supported variant that updates both these param-
eters: multiplying the penalty by a factor greater than one and multiplying the pa-
rameter for precision control for the MPRGP stopping criterion by the square root of
this factor. The larger penalty accelerates the outer loop, while the larger parame-
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ter for precision control accelerates the inner solver. Numerical experiments with the
Total-FETI method demonstrate the effectiveness of this new variant.

Keywords: quadratic programming, augmented Lagrangian, Lagrange multipliers,
FETI method, contact problem, equality constraint, SMALE.

1 Introduction

SMALE-M and SMALE-ρ (Semi-Monotonic Augmented Lagrangian method for Equal-
ity constraints) algorithms are efficient tools for solving the quadratic programming
(QP) problems with equality constraint and simple bounds [1]. These algorithms con-
sist of an outer loop for the update of parameters M or ρ, an update of the Lagrange
multipliers for equality constraint and MPRGP (Modified Proportioning with Reduced
Gradient Projection) algorithm [3] used as an inner solver for bound constrained QP
problems with penalized equality constraint. These algorithms are implemented into
our scalable in-house PERMON library [4] based on PETSc [6]. SMALE terminates
if the norm of the equality constraint violation and the norm of the projected gradi-
ent (see below) are sufficiently small compared to the norm of the right-hand side
multiplied by the relative tolerance. MPRGP terminates if the norm of the projected
gradient is less than the norm of the violation of the equality constraint multiplied
by the M parameter. Parameter M is fixed for SMALE-ρ while penalty ρ increases
depending on the augmented Lagrangian growth. In SMALE-M depending on the
augmented Lagrangian growth, M decreases while ρ is fixed. The larger penalty ρ
accelerates the outer loop, while the larger parameter M accelerates the inner solver.
This paper deals with the new theoretically supported SMALE-ρM variant increasing
both M and ρ parameters, which reduces both the number of outer and inner itera-
tions. The efficiency of the new method is demonstrated by numerical experiments
with a model contact problem solved using the TFETI (Total Finite Element Tearing
and Interconnect) method [5].

2 The MPRGP Algorithm

MPRGP represents an efficient algorithm for the solution of convex QP problems with
box constraints, i.e. for

argmin
x

1

2
xTAx− xTb s.t. l ≤ x ≤ u, (1)

where A ∈ Rn×n is symmetric positive semi-definite, x is the solution, b is the right-
hand side, l and u is the lower and upper bound, respectively. The basic version
belonging to active set-based methods can be considered a modification of the Polyak
algorithm [1]. MPRGP performs three types of steps - the classical conjugate gradient
(CG) step, the partial CG step to the bound followed by an expansion step (expanding
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the active set) and the proportioning step (reducing the active set). Modifications of
the active set are done using the components of the gradient.

Let g = Ax − b be the gradient. Then we can define component-wise (for j ∈
{1, 2, . . . , n}) gradient splitting that is computed after each gradient evaluation. The
free gradient is defined as

gf
j =

{
0 if xj = lj or xj = uj,

gj otherwise.

The reduced free gradient is

gr
j =


0 if xj = lj or xj = uj,

min
(

xj−lj
α

, gj

)
if lj < xj < uj and gj > 0,

max
(xj−uj

α
, gj

)
if lj < xj < uj and gj ≤ 0,

where α ∈ (0, 2||A||−1] is used as a step length in the expansion step. The definition
of the chopped gradient is

gc
j =


0 if lj < xj < uj,

min(gj, 0) if xj = lj,

max(gj, 0) if xj = uj.

Finally, the projected gradient is defined as gP = gf + gc. Its norm decrease is the
natural stopping criterion of the algorithm.

Let the projection onto the feasible set Ω = {x : l ≤ x ≤ u} be defined as

[PΩ(x)]j = min(uj,max(lj,xj)).

Now we have all the necessary ingredients to summarise MPRGP in Algorithm 1.
The algorithm has been proven to enjoy an R-linear rate of convergence given by the
bound on the spectrum of the Hessian matrix [1].

3 The SMALE Algorithms

The SMALE algorithm eliminates the requirement to set the proper penalty value ρ
and extends an inner solver by an outer loop updating the Lagrange multiplier for the
equality constraint. The outer loop (potentially) updates the penalty parameter, the
inner solver stopping criterion and the right-hand side. Then the appropriate inner
solver is called to solve QP with an eliminated equality constraint.

Our goal is to solve QP with box and linear equality constraints

argmin
x

1

2
xTAx− xTb s.t. l ≤ x ≤ u s.t. BEx = o, (2)
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Algorithm 1: MPRGP
Input: A, x0 ∈ Ω, b, Γ > 0, α ∈ (0, 2||A||−1]

1 g = Ax0 − b, p = gf (x0), k = 0
2 while ||gP (xk)|| is not small:
3 if ||gc(xk)||2 ≤ Γ2gr(xk)Tgf (xk):
4 αf = max{αcg : x

k − αcgp}
5 αcg = gTp/pTAp
6 if αcg < αf :
7 // CG step
8 xk+1 = xk − αcgp
9 g = g − αcgAp; βcg = gf (xk+1)TAp/pTAp

10 p = gf (xk+1)− βcgp

11 else:
12 // Expansion step
13 xk+ 1

2 = xk+1 − αfp
14 g = g − αfp

15 xk+1 = xk+ 1
2 − αgr(xk+ 1

2 )
16 g = Axk+1 − b
17 p = gf (xk+1)

18 else:
19 // Proportioning step
20 αcg = gTgc(xk)/gc(xk)TAgc(xk)
21 xk+1 = xk − αcgg

c(xk)
22 g = g − αcgAgc(xk)
23 p = gf (xk+1)

24 k = k + 1

Output: xk

where BE ∈ Rm×n. The right-hand side of the linear equality constraint is assumed to
be zero, but linear equality-constrained QP with a nonzero right-hand side can always
be homogenized.

The MPRGP algorithm is used as the inner solver for the box-constrained subprob-
lem. Inner solvers iterates while

||gP || ≥ min(Mk||BEx||, η).

Traditionally, enforcing the equality constraint can be achieved by the quadratic
penalty ρBT

EBE being part of the Hessian

A+ ρBT
EBE.

The convergence is then very sensitive to spectral properties of ρBT
EBE and setting

the right value of the penalty ensuring sufficient fulfilment of this equality constraint,
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and not spoiling significantly the conditioning of this Hessian. A large penalty guaran-
tees a more accurate fulfilment of the equality constraint but destroys the convergence
rate. The spectral properties can be improved by multiplying the equality constraint
by a transformation matrix T defining the orthonormalization of rows of BE , so that

(TBE)
TTBE = BT

E(BEB
T
E)

−1BE = QE

is the projector onto ImBT
E and the Hessian is then given as

A+ ρQE.

Another significant improvement can be achieved via enforcing the equality constraint
by the orthogonal projector

PE = I −QE

onto KerBE . However, due to projection PΩ onto the feasible set in the MPRGP al-
gorithm in its expansion step, the projection PE is not sufficient to enforce the equality
constraint and the Hessian still has to be equipped with the penalized term ρQE , i.e.,
our Hessian is

PEAPE + ρQE.

3.1 SMALE-M and SMALE-ρ variants

SMALE algorithm has two basic variants, namely SMALE-M and SMALE-ρ. It is
recommended in both variants to start with a small penalty ρ and increase ρ or reduce
M by a factor β if an increase of the augmented Lagrangian

L(x,µ, ρ) =
1

2
xTAx− xTb+ µTBEx+

ρ

2
||BEx||2

in an outer loop is not sufficient, see Algorithms 2 and 3. The recommended variant
is SMALE-M , as it does not change the Hessian matrix and does not require recom-
putation of fixed step-length ᾱ for the expansion step.

Algorithm 2: SMALE-M variant.
Initialize: x0, β > 1, M0 > 0, ρ0 > 0, µ0 = o, k = 0

1 while ||gP (xk,µk, ρk)|| > ϵ||b|| ∨ ||Bxk|| > ϵ||b||:
2 µk+1 = µk + ρkBxk

3 find xk+1 ≥ l and xk+1 ≤ u such that
||gP (xk+1,µk+1, ρk)|| ≤ min(Mk||Bxk+1||, η)

4 if L(xk+1, µk+1, ρk) ≤ L(xk, µk, ρk−1) +
1
2
ρk||Bxk+1||2:

5 Mk+1 = Mk/β
6 k = k + 1
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Algorithm 3: SMALE-ρ variant.
Initialize: x0, β > 1, M0 > 0, ρ0 > 0, µ0 = o, k = 0

1 while ||gP (xk,µk, ρk)|| > ϵ||b|| ∨ ||Bxk|| > ϵ||b||:
2 µk+1 = µk + ρkBxk

3 find xk+1 ≥ l and xk+1 ≤ u such that
||gP (xk+1,µk+1, ρk)|| ≤ min(Mk||Bxk+1||, η)

4 if L(xk+1, µk+1, ρk) ≤ L(xk, µk, ρk−1) +
1
2
ρk||Bxk+1||2:

5 ρk+1 = βρk
6 k = k + 1

3.2 SMALE-ρM

Theorem 3.1 in [2] says that there exist bound on Mk generated by SMALE-M algo-
rithm

Mk ≥ min(M0,
√

ρλmin/β)

with λmin denoting the smallest eigenvalue of matrix A.
Considering this theorem, there exists index k such that

Mk/
√
ρk ≥

√
λmin/β = const.

Update of ρk by factor β allows us update of Mk by factor
√
β to keep their ratio

constant, i.e. Mk and ρk remain balanced also after multiplication by
√
β and β,

respectively. This is an idea behind new SMALE-ρM variant, see Alg. 4, when larger
penalty ρ accelerates an outer loop and affects larger augmented Lagrangian increase
and larger M parameter accelerates an inner loop via its stopping criterium requiring
lower precision on the projected gradient gP .

Algorithm 4: Improved SMALE-ρM variant.
Initialize: x0, β > 1, M0 > 0, ρ0 > 0, µ0 = o, k = 0

1 while ||gP (xk,µk, ρk)|| > ϵ||b|| ∨ ||Bxk|| > ϵ||b||:
2 µk+1 = µk + ρkBxk

3 find xk+1 ≥ l and xk+1 ≤ u such that
||gP (xk+1,µk+1, ρk)|| ≤ min(Mk||Bxk+1||, η)

4 if L(xk+1, µk+1, ρk) ≤ L(xk, µk, ρk−1) +
1
2
ρk||Bxk+1||2:

5 ρk+1 = βρk and Mk+1 =
√
βMk

6 k = k + 1
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4 Numerical experiments with TFETI for contact prob-
lems

Let us consider the spatial domain Ω which is decomposed into non-overlapping sub-
domains. Then virtually arbitrary Finite Element Method (FEM) implementation can
be used to generate the subdomain stiffness matrices Ks and the subdomain load vec-
tors f s as sequential data for each subdomain Ωs, s = 1, . . . , NS independently.

The original primal problem is

argmin
u

1

2
uTKu− fTu s.t. BIu ≤ o and BEu = o, (3)

where K = diag(K1, . . . ,KNS
) is global stiffness matrix, f =

[
fT
1 , . . . ,f

T
NS

]T is
global right hand side, u is unknown displacement, BI represents non-penetration
condition, and BE glues the subdomains together. The primal problem is transformed
into dual one

argmin
λ

1

2
λTPFPλ− λTPd s.t. λI ≥ −λ̃I and Gλ = o, (4)

where

F = BK†BT , G = RTBT , P = I −GT (GGT )−1G,

e = RTf , λ̃ = GT (GGT )−1e, d = BK†f − F λ̃,

K† denotes a left generalized inverse of K, i.e. a matrix satisfying KK†K = K and
R is the null space matrix. The constraint matrix B = [BT

I BT
E ]

T can be constructed so
that it has a full rank, and then the Hessian PFP is positive definite with a relatively
favourably distributed spectrum for the application of the CG method.

The chosen benchmark is two membranes semicoercive contact problem described
in Figure 1. We use TFETI domain decomposition to solve this problem. Let us
consider only one regular decomposition into 32 subdomains (4 in each direction per
one membrane) with 81 elements per subdomain (9 in each direction) making a total
of 3 200 degrees of freedom. The stopping tolerance of the outer solver (SMALE) is
set to 10−8 relative to the right-hand side. Other initial parameters for SMALE are
M = ||A||, η = 1.1||A||, ρ = ||A|| and, parameter β for M or ρ update takes values
from {2, 10}. We used standard expansion with fixed-length ᾱ = 1/||A||. The results
are presented in Table 1.

SMALE-ρM can significantly decrease the number of outer iterations (e.g. from
49 and 52 in SMALE-M and from 20 and 12 in SMALE-ρ to 12 and 8 in SMALE-
ρM case) and the total number of Hessian multiplications (e.g. from 87 and 156 in
SMALE-M and from 86 and 99 in SMALE-ρ to 75 and 86 in SMALE-ρM case).
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Figure 1: Model contact problem.

β SMALE variant #outer iters #Hess. mult. #CG st. #Exp. st. #Pro. st.

2
-M 49 87 81 3 0
-ρ 20 86 80 3 0

-ρM 12 75 69 3 0

10
-M 52 156 150 3 0
-ρ 12 99 93 3 0

-ρM 8 86 80 3 0

Table 1: Comparison of SMALE variants by the numbers of outer iterations, over-
all Hessian multiplications, CG, expansion, and proportioning steps for
β ∈ {2, 10}.
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5 Concluding remarks

The new SMALE-ρM algorithm updating both parameters ρ and M keeping constant
ratio Mk/

√
ρk was investigated. The numerical results show that this version can

outperform both standard versions SMALE-M and SMALE-ρ reducing the number
of outer iterations by a factor of up to 6.5 and 1.7, respectively, and reducing the
number of Hessian multiplications by a factor up to 1.8 and 1.2, respectively.
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