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Abstract

In this paper, a reliability analysis of stochastic systems is presented using probability
density evolution method (PDEM). In PDEM, generalized density evolution equations
(GDEEs) are completely decoupled between physical and probability space, which is
developed based on the idea of probability conservation. Using the GF-discrepancy
technique, a collection of representative points of random variables are constructed in
order to provide an accurate estimate of the probability density function. Sufficient
precision requires a large number of sample points, which becomes computationally
costly. Physics-informed neural network (PINN)-based PDEM is one of promising
methods which reduce the computational cost. Beside the advantages of PINN for
solving GDEEs in PDEM, PINN may suffer from gradient estimation using Auto-
matic Differentiation. In this study, stochastic projection based PINN, a gradient free
method, is a coupled framework of stochastic projection theory and traditional PINN,
for solving GDEEs. To illustrate the efficiency of the method, two numerical exam-
ples are investigated for estimating probability density function which is utilized for
reliability analysis of stochastic systems.

Keywords: reliability analysis, probability density evolution method, physics-informed
neural network, stochastic projection theory, partial differential equation, uncertainty
propagation.
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1 Introduction

Reliability analysis of engineering structures is a crucial tool for calculating the prob-
ability of structural system failure, considering the uncertainties in the system and ex-
ternal forces. Various reliability methods have been proposed for determining failure
probability, categorized into four sub-groups: analytical approximation methods, nu-
merical sampling-based methods, surrogate-based methods, and numerical integration
methods. The analytical approximation methods include the first-order and second-
order reliability methods (FORM and SORM). These methods approximate the per-
formance function around the most probable point (MPP) using first and second-order
Taylor expansions [2]. However, they can yield erroneous results when there are mul-
tiple MPPs or when the performance function is nonlinear.

Numerical sampling-based methods, such as Monte Carlo simulation, subset sim-
ulation, are more robust compared to FORM and SORM. However, these methods
are computationally expensive for high-fidelity models or when estimating low failure
probabilities, as they require numerous model evaluations. To reduce computational
costs, surrogate-based methods have gained popularity in recent decades. These meth-
ods use surrogate models to replace the original performance function with a few
observations. Popular surrogate models include Kriging [3], polynomial chaos expan-
sion [4], and artificial neural networks [5].

The numerical integration method estimates failure probability by integrating the
probability density function (PDF) of the performance function over the failure do-
main. The PDF is estimated using statistical moments, including central moments [6],
fractional moments [7], the point estimation method [8] etc. The probability density
evolution method (PDEM) is a numerical integration technique proposed by Li and
Chen [9]. PDEM is based on the principle of probability conservation. To estimate
the probability density function (PDF) of the performance function using PDEM, an
effective strategy is necessary to generate representative points for the random vari-
ables in the system. This strategy ensures that the representative points adequately
cover the entire probability space, allowing PDEM to accurately estimate the PDF
within the distribution domain. Various sampling strategies can be used, including the
number-theoretical method, the tangent sphere method, the quasi-symmetrical point
method, the GF discrepancy-based method, and the partially stratified sampling-based
method. Among these, the GF discrepancy-based method [9] is the most common
and popular for estimating the PDF using PDEM. While PDEM provides accurate
PDF estimations, it requires a large number of representative points, which can be
computationally expensive for high-fidelity models.

To reduce the computational burden, different machine learning algorithms have
been proposed by different researchers. Among them, physics-informed neural net-
work (PINN) have gained popularity in the recent decade. PINN, an emerging deep
learning method proposed by Raissi and Karniadakis [11], incorporates physical con-
ditions into neural networks. Similar to a standard feed-forward neural network, the
loss function in PINN is formulated by incorporating the governing physical laws, rep-
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resented as an ordinary differential equation (ODE) or a partial differential equation
(PDE), along with the system’s initial and boundary conditions. Recently, Das and
Tesfamariam [12] proposed a couled framework between PINN and PDEM for relia-
bility analysis of stochastic system. Although PINN models have shown promise as
solutions for a wide range of physical phenomena, achieving high model accuracy and
training efficiency often remains challenging. Also PINN employs a fully connected
network that enforces physical constraints via residual loss calculated at collocation
points. As the training loss is computed using Automatic Differentiation, the network
must be differentiable to meet the requirements of the governing differential equations.
To alleviate these issues, in this study, a stochastic projection based PINN is utilized
for solving PDEM which combines the stochastic projection theory with traditional
PINN and eliminates the computation of gradients in PINN.

The outline of the study is structured as follows. Section 2 describes the complete
overview of the reliability analysis of the stochastic system, in which a brief descrip-
tion of PDEM and how PDEM is used to estimate the reliability of a system. Section 3
provides a brief description of stochastic projection based PINN. The numerical appli-
cations of the proposed method are presented in Section 4. Finally, Section 5 presents
the concluding remarks.

2 Probability Density Evolution Method for Reliability
Analysis

Consider a structural system with N degrees of freedom subjected to a dynamic exter-
nal force, η(t). The governing equation of motion is expressed as

M(Θ)Ẍ+C(Θ)Ẋ+K(Θ)X = Γη(Θ, t) (1)

where M, C, and K denote the mass, damping, and stiffness matrices of the structure,
respectively. The structural responses i.e., displacement, velocity and acceleration
are represented by X, Ẋ, and Ẍ, respectively. The random variables present in the
system is denoted by Θ. The influence vector associated with the external excitation
is represented by Γ. Therefore, the state space formulation of Eq. 1 can be expressed
as

Ẏ = A(Y,Θ, t) (2)

where the state vector Y is expressed as Y =
[
XT ẊT

]T
=

[
Y1 . . . Y2N

]T . The
matrix A in Eq. 2 is written as

A =

[
ẊT

[−M−1C(Θ)Ẋ−M−1K(Θ)X+ ΓM−1η(Θ, t)]T

]
(3)

.
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2.1 Probability Density Evolution Method

The present investigation employs the probability density evolution technique (PDEM),
as suggested by Li and Chen [9], to estimate the probability density function (PDF)
of a stochastic process. The approach is formulated based on the principle of proba-
bility conservation. Therefore, the generalized density evolution equation (GDEE) in
PDEM can be expressed as [9]

∂pYΘ(y,θ, t)

∂t
+

2N∑
i=1

Ẏi(θ, t)
∂pYΘ(y,θ, t)

∂yi
= 0 (4)

where the joint PDF between Y and Θ at any time instant t is denoted by pYΘ(y,θ, t).
The above equation can be expressed in reduced space when one physical quantity is
considered,

∂pYΘ(y,θ, t)

∂t
+ Ẏ (θ, t)

∂pYΘ(y,θ, t)

∂y
= 0 (5)

The initial condition of the above partial differential equation is expressed as

pYΘ(y,θ, t)|t=0 = δ
[
y − y(θ, 0)

]
pΘ(θ) (6)

where δ(·) represents the Dirac delta function. By solving Eq. 5 with an initial condi-
tion as in Eq. 6, the joint PDF Y and Θ can be estimated which is used to calculate
the PDF of Y , expressed as

pY (y, t) =

∫
ΩΘ

pYΘ(y,θ, t)dθ (7)

2.2 Estimation of First-passage Reliability using PDEM

The probability of failure (Pf ) for a first-passage problem can be expressed as

Pf = Pr
{
|Y (t)| > YThres,∃t ∈ [0, T ]

}
(8)

where Pr(·) represents the probability operator and threshold value of Y (t) is denoted
by YThres. It is assumed that the process Y (t) is evaluated within the time interval [0,
T ] where T is the maximum duration. Using the principle of equivalent extreme-value
event [10], Eq. 8 can be reformulated as

Pf = Pr
{
YEEV ≥ YThres

}
=

∫ ∞

YThres

pYEEV
(y)dy (9)

where the PDF of equivalent extreme-value (EEV) of Y (t) is represented by pYEEV
(y).

Also, EEV of Y (t) is the designer’s choice. For instance, for maximum value of the
process Y (t), YEEV = max

t∈[0,T ]

(
|Y (t)|

)
. As it is seen from Eq. 9 that pYEEV

(y) needs to

be estimated using Eq. 5. However, YEEV is independent of time, and Eq. 5 can not be
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used directly. Therefore, we assume a virtual stochastic process which is expressed as
follows

V(τ) = YEEV sin(ωτ); τ ∈ [0, 1] (10)

where ω = 5π/2 [10]. It is seen from the above equation that when τ = 0, V(τ) = 0
and when τ = 1, V(τ) = YEEV. Using Eq. 5, we can estimate the PDF of V(τ) which
is written as

∂pV(V , τ)
∂τ

+ V̇(τ)∂pV(V , τ)
∂V

= 0 (11)

Once pV(V , τ) is obtained, the PDF of YEEV is calculated as

pYEEV
(y) = pV(V , τ)|τ=1 (12)

We are interested to solve Eq. 11 using physics-informed neural network, which is
discussed in the following section.

3 Stochastic Projection Based Physics Informed Neu-
ral Network

A physics-informed neural network (PINN) is a type of feed-forward neural network
that incorporates physical constraints into the network through its loss function [1].
The architecture of a PINN is similar to that of a standard feed-forward neural net-
work, where the network’s output is represented as a nested nonlinear transformation
of the outputs obtained from the hidden layers.

l0 = X; li = Φ(Wili−1 + bi); y = ln; ∀i ∈ [1, n] (13)

where Φ denotes the activation function, a nonlinear operation. The network has n
number of hidden layers and weights and bias of the network are denoted by W and
b, respectively. Using the concepts of a feed-forward neural network, a PINN is con-
structed where the weight and bias parameters are updated by minimizing a physics-
informed loss function. In this study, we employ PINN to solve a nonlinear partial
differential equation, which is expressed in the following form

∂p(y, t)

∂t
+N [p(y, t);χ] = 0; y ∈ Ω, t ∈ T

p(y, t) = G(y, t); p(y, 0) = H(y) y ∈ Ω, t ∈ T
(14)

where p(y, t) is the solution of Eq. 14 which is a function of a spatial variable, y ∈ Ω,
where Ω represents a space in RD and a temporal variable, t ∈ [0, T ]. The nonlinear
differential operator of the above equation is denoted by N [p(y, t);χ] in which χ is
the coefficient of the differential operator. Also, G(y, t) and H(y) denote the boundary
and initial conditions, respectively. The loss functions corresponding to Eq. 14 can be
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formulated in the following form:

Lp(λ) =
1

Np

Np∑
i=1

∣∣∣∣∣∂p(yip, tip;λ)∂t
+N [p(yip, t

i
p);χ]

∣∣∣∣∣
2

L0(λ) =
1

N0

N0∑
i=1

∣∣∣p(yi0, 0;λ)−H(yi0, 0)
∣∣∣2;Lb(λ) =

1

Nb

Nb∑
i=1

∣∣∣p(yib, tib;λ)− G(yib, tib)
∣∣∣2

(15)

where the residual of the differential equation, in Eq. 14 is denoted by Lp. Also,
the residual corresponding to initial and boundary conditions are represented by L0

and Lb, respectively. In Eq. 15, λ is the vector consisting of the weight and bias
parameters of the neural network.

{
yip, t

i
p

}Np

i=1
are the samples, drawn from the domain

x ∈ Ω, t ∈ T where Np denotes the total number of samples. Similarly,
{
yi0,Hi

0 =

H(yi0)
}N0

i=1
and

{
yib, t

i
b,Gi

b = G(yib, tib)
}Nb

i=1
are the samples corresponding to initial and

boundary conditions, respectively where the samples sizes of the same are denoted by
N0 and Nb, respectively. Thus, a weighted sum of loss functions, written in Eq. 15, is
constructed, which is given by

L(λ) = Lp(λ) + β1L0(λ) + β2Lb(λ) (16)

where β1 and β2 are the weight parameters to adjust the relative importance of each
residual term. In this study, stochastic projection method is used to compute the gra-
dient around the collocation points, as defined in Eq. 15. In this method, to compute
the gradient at any point (ȳ, i.e., centre of the circle), we defined a neighbourhood of
radius rn, as shown in Fig. 1. Now within this neighbourhood, N number of sam-

Figure 1: Diagram for stochastic projection method

ples, (yi), are generated. Subsequently, gradient of network with respect to the input
variable is expressed as

∂N
∂y

=
1
N

∑
i{N (yi)−N (ȳ)}(yi − ȳ)T

1
N

∑
i(yi − ȳ)(yi − ȳ)T

(17)
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4 Numerical Results

Tho different numerical examples are presented to illustrate the reliability analysis us-
ing the probability density evolution method. Those are: (1) a four-branch problem in
which the probability of failure is estimated from a series system; (2) reliability anal-
ysis of a shear building frame. To reduce the computational cost, physics-informed
neural network is used, which approximates the original response surface of an equiv-
alent extreme event. The gradient is computed based on stochastic projection theory.

4.1 Example 1:

As the first example, a four-branch problem is considered whose Pf is given by

Pf = Pr
[
− (θ1 − θ2)

2

10
+

θ1 + θ2√
2

≥ 3 ∪ −(θ1 − θ2)
2

10
− θ1 + θ2√

2
≥ 3

∪ (θ1 − θ2) ≥
7√
2

∪ (θ2 − θ1) ≥
7√
2

] (18)

where θ1 and θ2 are the random variables which follow the standard Gaussian distri-
bution. According to an equivalent extreme event, the above equation is equivalent
to

Pf = Pr
[
YEEV ≥ 7/

√
2
]
=

∫ ∞

7/
√
2

pYEEV
(y)dy (19)

where YEEV is given as

YEEV = max


−0.1(θ1 − θ2)

2 + (θ1 + θ2)/
√
2 + 7/

√
2− 3

−0.1(θ1 − θ2)
2 − (θ1 + θ2)/

√
2 + 7/

√
2− 3

(θ1 − θ2)

(θ2 − θ1)

 (20)

To train PINN, here a neural network with four hidden layers and 20 neurons in each
hidden layer is considered. L-BFGS optimizer is used in this study in which a learning
rate is taken as 0.1. To train the neural network, a randomly generated set of boundary
and initial points along with equidistant collocation points are employed. The PDE
loss at the collocation points, defined in Eq. 15 is computed using the stochastic pro-
jection method. As discussed in Section 3, the stochastic projection method leverages
neighborhood information around a given point to evaluate the gradient. Therefore
2000 collocation points are generated to compute the gradient. Fig. 2(a) shows the
PDF of V(τ). The PDF of YEEV is obtained by setting τ to 1, as shown in Fig. 2(b).
Once PDF is obtained, the probability of failure is estimated using Eq. 19. The failure
probability is 2.48×10−3. In comparison, a Monte Carlo simulation with 106 samples
yields a failure probability of 2.43×10−3, which is close to the value obtained using
stochastic projection based PINN.
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Figure 2: PDF of (a) virtual stochastic process,V(τ) and (b) equivalent extreme event,
YEEV

4.2 Example 2:

We consider a 10-storey shear building frame for our next problem. The stiffness of
each floor is assumed to follow a lognormal distribution with mean values of 1.962,
1.875, 1.758, 1.754, 1.662, 1.662, 1.662, 1.662, 1.662, and 1.662 (×108 N/m) from
the bottom storey, with a coefficient of variation of 0.1. The lumped masses of each
floor are : m1 = 3.478, m2 = 3.225, m3 = 2.887, m4 = 2.667, m5 = 2.558, m6 =
2.558, m7 = 2.558, m8 = 2.558, m9 = 2.558, m10 = 2.558 (×105 kg), respectively,
respectively. The height of each floor is 3.6 m. The structure is subjected to a ground
motion, which is given as

ẍg(t) = β1ẍNS(t) + β2ẍEW (t) (21)

where ẍNS and ẍEW are the El Centro ground motion in N-S and E-W components,
respectively. The coefficients β1 and β2 are normally distributed, whose mean and
standard deviation are 2 and 0.2, respectively. The damping ratio is assumed to be
0.05. Hence, the problem has 12 random variables, i.e., θ = [k1, k2, . . . , k10, β1, β2].
The probability of failure is given by

Pf = Pr
{ 10⋃

i=1

|Yi(θ, t)| ≥ YThres,∃t ∈ [0, T ]
}

(22)

where Yi(θ, t) denotes interstory drift of the i-th story. The allowable interstory drift is
denoted by YThres, and the duration of the ground motion is denoted by T . According
to the equivalent extreme event, Eq. 22 is equivalent to

Pf = Pr
[
YEEV ≥ YThres

]
=

∫ ∞

YThres

pYEEV
(y)dy (23)

where YEEV is given as

YEEV = max
1≤i≤10

{
max
t∈[0,T ]

∣∣Yi(θ, t)
∣∣} (24)

8



Like previously, to train PINN, here a neural network with six hidden layers and 30
neurons in each hidden layer is considered. L-BFGS optimizer is used in this study
in which a learning rate is taken as 0.1. To train the neural network, a randomly gen-
erated set of boundary and initial points along with equidistant collocation points are
employed. The PDE loss at the collocation points, defined in Eq. 15 is computed using
the stochastic projection method. As discussed in Section 3, the stochastic projection
method leverages neighborhood information around a given point to evaluate the gra-
dient. Therefore 2500 collocation points are generated to compute the gradient. Fig. 3
shows PDF of extreme event as defined in Eq. 24.

0 5 10 15 20

0

0.07

0.14

0.21

0.28

0.35

Figure 3: PDF of equivalent-extreme event, YEEV

5 Conclusions

The numerical investigations conducted in this study concentrate on reliability analy-
sis of stochastic systems utilizing the probability density evolution method (PDEM).
PDEM is computationally demanding for high-fidelity models due to its requirement
for a large number of sample points. To alleviate this computational burden, physics-
informed neural network (PINN) is employed. The key findings from this study are
summarized as follows:

• PDEM efficiently estimates the joint probability density function of the equivalent-
extreme event for a Multi-Degree-of-Freedom (MDOF) system by solving Gen-
eralized Differential Evolution Equations (GDEEs). This approach contrasts
with traditional methods like the Fokker-Planck equation and Liouville equa-
tion, offering improved computational efficiency.

• The proposed stochastic projection based PINN overcomes the challenges dur-
ing the computation of gradient in traditional PINN. This method produces the
probability of failure close to Monte Carlo simulation.
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