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Abstract 
 

Soil-structure interaction of structures protected by Geotechnical Seismic Isolation 
(GSI) system is investigated in this paper through a novel nonlinear approach. 
Preisach formalism is adopted to model the hysteretic behaviour of the soil through 
simplified nonlinear springs and dashpots. The efficiency of GSI versus natural soil 
is explored through extensive nonlinear numerical analyses on a benchmark structure. 
Comparisons with the currently adopted equivalent linear approach are also presented, 
highlighting the versatility of the proposed nonlinear model to reliably represent the 
nonlinear behaviour of the coupled structure-GSI system. 
 
 

Keywords: nonlinear soil-structure interaction, rubber soil mixture, Preisach 
formalism, dynamic response, geotechnical seismic isolation, GSI 
 

1 Introduction 
 

Relatively recently, Geotechnical Seismic Isolation (GSI) has emerged as a technique 
to reduce the seismic vulnerability of structures [1]. Differently from common 
protection strategies, GSI does not directly modify the characteristics of the structure 
to be protected but works on the interface between the foundation of the structure and 
the surrounding terrain through the introduction of one or more layers of engineered 
soil. Since the protection concept is based on the modification of the soil-structure 
interaction, GSI requires a multidisciplinary approach, integrating insights from 
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geology, civil engineering, and material sciences to design solutions that are both 
effective and economically viable. 
 

Engineered soils used in GSI systems are developed by incorporating a variety of 
materials. Commonly used geosynthetics include geogrids, synthetic liners, 
geomembranes, and geotextile layers, as noted in [2] and [3]. Additionally, granular 
materials such as sand [4], gravel [5], stone pebbles [6], rubber-soil mixtures [7], and 
geofoam [8] are frequently utilized. In certain instances, hybrid and multi-layered 
solutions have also been explored, offering enhanced performance and adaptability 
[9],[10]. The properties of the engineered soils are tailored to achieve the desired 
isolation effect. 

 
GSI systems mostly involve three main protection mechanisms for the main 

structure. The first uses the modified foundation soil to alter the system's dynamic 
response by shifting its fundamental frequency [11],[12]. This mechanism is usually 
realized either through a layer of low-modulus material or through a sliding interface, 
and its conceptual base is the same as the traditional base isolation mechanism. The 
second protection mechanism uses the dissipative properties of the engineered soil to 
reduce or filter the energy directed to the structure [13]. The third mechanism relies 
on deliberate sliding control between the structural foundation and the encompassing 
geomaterials [10].  

 
The effectiveness of GSI has been extensively investigated, both through 

numerical simulations (see e.g. [1],[14]) and experimental research [15]-[17]. 
Notably, Pitilakis et al. [17] performed an experimental campaign on a full-scale 
prototype structure founded on gravel-rubber mixtures. Overall, GSI showed 
considerable potential in enhancing the seismic resilience of structures. Despite the 
large interest showed in the application of GSI systems, numerical studies are 
generally conducted mainly using either equivalent linear approaches see e.g. [14] or 
advanced non-linear FE modelling see e.g. [18]. In the last decade, however, a 
growing body of literature has been devoted to simplified models and the calibration 
of nonlinear springs able to capture the main features of nonlinear soil-structure 
interaction. In this regard, nonlinear rocking stiffness have been determined in [19] 
through an empirical approach based on FE analyses, further extended in [20] and 
applied to motorway bridge [21]. A nonlinear sway-rocking model has been 
developed [22] for shallow foundations. Li et al. [23] calibrated nonlinear translational 
and rotational springs through experimental data from centrifuge tests on pile 
foundations. Cacciola and Tombari [24] recently proposed the use of the Preisach 
formalism [25] to model the steady-state response of nonlinear soil structure 
interaction systems, further extended in [26] to the study of the seismic response of 
an existing historic bell tower.  

 
In this paper, the efficiency of the Preisach formalism to model the seismic 

nonlinear soil-structure interaction of a structure protected by GSI is explored. 
Amplitude dependent equivalent springs and dashpots originally derived in [24] 
through a harmonic balance approach are calibrated in this study to model the 
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behaviour of the structure resting on a GSI layer. Comparisons with the results from 
an equivalent linear analysis are presented and discussed in the paper. 

 
 

2  Methods 
 

Consider the building structure depicted in Figure 1a. The superstructure is considered 
to behave linearly. The foundation is assumed rigid and resting on a nonlinear 
geotechnical seismic isolation (GSI) system. The overall coupled behaviour is 
governed by the following equation of motion: 
 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒖(𝑡) + 𝒉(𝑡) = −𝑴𝝉�̈�௚(𝑡)         (1) 
 
where 𝒖(𝑡) is the vector collecting the i=1,…,n degrees of freedom of the system, 𝑢௜, 
𝑴 is the mass matrix, C is the damping matrix , 𝑲 is the stiffness matrix, and 𝒉(𝑡) is 
the nonlinear hysteretic vector encompassing the nonlinear forces generated by the 
soil structure interaction modelled as nonlinear springs, i.e. the horizontal force 𝑓௛ and 
the moment 𝑓ఏ, 𝝉 is the influence vector and �̈�௚(𝑡) is the ground acceleration. 
  

       
  

Figure 1: a) Structure resting over a non-linear compliant soil b) simplified 
mechanical 3DoF model 

 
For illustrative purpose, consider the simplest case depicted in Figure 1b 

consisting of 3-DoF nonlinear soil-structure coupled system (𝑖. 𝑒.  𝒖(𝑡) =
[𝑢 𝑢ி  𝜃]்). A similar model has been adopted in [14] for Structure-GSI interaction 
and in [24] for general soil-structure interaction. The pertinent matrixes listed in 
equation (1) reduce to  

 

𝑴 = ൥
𝑚 0 0
0 𝑚ி 0
0 0 𝐼ி

൩,                                                                (2) 

 

𝑎) 𝑏) 



4 
 

with m is the superstructure mass, 𝑚ி is the foundation mass,  𝐼ி is the foundation 
moment of inertia and  
 

𝑲 = ൥
𝑘 −𝑘 −𝑘 𝐻

−𝑘 𝑘 𝑘 𝐻
−𝑘 𝐻 𝑘 𝐻 𝑘 𝐻ଶ

൩.                                                           (3) 

 
In which 𝑘  is the superstructure lateral stiffness and 𝐻 the height of the superstructure. 
Also, 

𝑪 = ൥
𝑐 −𝑐 0

−𝑐 𝑐 0
0 0 0

൩,                                                                (4) 

 
with 𝑐 the viscous damping of the superstructure.  The hysteretic term can be written 
as  
 

𝒉(𝑡) = ൣ0 𝑓௛(𝑢ி, �̇�ி) + 𝑐ோ௛�̇�ி 𝑓ఏ൫𝜃, �̇�൯ + 𝑐ோఏ�̇�൧
்
,                                      (5) 

 
where 𝑓௛(𝑢ி, �̇�ி) and 𝑓ఏ(𝜃, �̇�) are the nonlinear hysteretic elements pertinent to the 
translational and rotational foundation degrees of freedom 𝑢ி and 𝜃, while the terms 
𝑐ோ௛�̇�ி and 𝑐ோఏ�̇� have been herein introduced to account for energy dissipation due to 
radiation damping (see e.g. [14]). According to the Preisach formalism [15], the 
hysteresis is the result of the superposition of an infinite set of elementary hysteresis 
operators (hysterons or relay operators) 𝑓ఈ,ఉ, having local memory, that is  
 

𝑓
𝑖,𝐻 

(𝑥, �̇�) = ∬ 𝜇(𝛼, 𝛽)𝑓
𝛼,𝛽

(𝑥, �̇�)𝑑𝛼𝑑𝛽
𝛼≥𝛽

,         𝑖 = ℎ, 𝜃 and 𝑥 = 𝑢𝐹, 𝜃,           (6) 

 
where 𝜇(𝛼, 𝛽) is an appropriate weight (or distribution) function that can be 
determined from experimental tests. Alternatively, suitable analytical functions (see 
e.g. [27-29]) can be adopted to represent various rheological models. In this regard, 
the simplest uniform distribution function 𝜇(𝛼, 𝛽), been used in to capture the main 
features of soil-structure interaction problems [24]. It is noted that the implementation 
of equation (6) requires a bespoke numerical integration scheme updating local 
dominant maxima and dominant minima as described in [27]. As a simplification, 
using a harmonic balance approach [27-29] it is possible to determine closed form 
expressions of nonlinear equivalent damping and the equivalent stiffness. Namely, for 
the horizontal hysteretic element [24] 
 

 𝑐௘,௛(𝑎௛) =
௔೓௞೓

మ

ଷగఠ௏೘ೌೣ
 ,                 (7) 

and 

     𝑘௘,௛(𝑎௛) = 𝑘௛ −
௞೓

మ௔೓

ସ௏೘ೌೣ
 ;                 (8) 

 
while for the rotational element 
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𝑐௘,ఏ(𝑎ఏ) =
௔ഇ௞ഇ

మ

ଷగఠெ೘ೌೣ
 ,                 (9) 

and 

      𝑘௘,ఏ(𝑎ఏ) = 𝑘ఏ −
௞ഇ

మ௔ഇ

ସெ೘ೌೣ
  ;                (10) 

 
where 𝑉௠௔௫ and 𝑀௠௔௫ assume the role of the limiting average horizontal load and 
average maximum attainable values of overturning moment of the foundation, 
respectively, while 𝑘௛ and 𝑘ఏ are the elastic stiffnesses of the given foundation. Also, 
in equations (7) and (9), 𝜔 is the circular frequency of the harmonic excitation that in 
the case of broadband excitation can be replaced by the equivalent natural frequency, 
amplitude dependent, of the system. As reported in [23] and [24], equations (7) and 
(9) might be conveniently rewritten as 
 

𝑐௘,௛(𝑎௛) = 𝜂௘,௛(𝑎௛)ඥ𝑘௘,௛(𝑎௛)𝑚                   (11) 
and 

𝑐௘,ఏ(𝑎ఏ) =  𝜂௘,ఏ(𝑎ఏ)ඥ𝑘௘,ఏ(𝑎ఏ)𝐼ி ,                 (12) 
 
where 𝜂௘,௛(𝑎௛) and 𝜂௘,ఏ(𝑎ఏ) are the frequency independent loss factors given by [24] 
 

𝜂௘,௛(𝑎௛) =
௖೐,೓(௔೓)ఠ

௞೐,೓(௔೓)
=

ସ

ଵଶగ
ೇ೘ೌೣ
ೖ೓ೌ೓

ିଷగ
;    ∀ 

௏೘ೌೣ

௞೓௔೓
<

ଵ

ସ
                              (13) 

and 

     𝜂௘,ఏ(𝑎ఏ) =
௖೐,ഇ(௔ഇ)ఠ

௞೐,ഇ(௔ഇ)
=

ସ

ଵଶగ
ಾ೘ೌೣ
ೖഇೌഇ

ିଷగ
;    ∀ 

ெ೘ೌೣ

௞ഇ௔ഇ
<

ଵ

ସ
 .                            (14) 

 
It is noted that the simplified expressions of the equivalent stiffnesses and dashpots 
are functions of the instantaneous peak amplitude of the foundation displacement 
𝑎௛ and rotation 𝑎ఏ, while the full (and clearly more accurate) Preisach model of 
hysteresis takes into account the memory of the system through the dominant maxima 
and minima. Nevertheless, it has been shown ([24], [26]) that if appropriately 
calibrated, those nonlinear elements can reliably describe the evolution of the stiffness 
reduction and damping increment of structures undergoing base vibrations. As a 
consequence, the hysteretic term given in equation (5) is replaced by the equivalent 
nonlinear one  
 
𝒉ୣ୯(𝑡) =

ൣ0 𝑘௘,௛(𝑎௛)𝑢ி + (𝑐௘,௛(𝑎௛) + 𝑐ோ௛+)�̇�ி 𝑘௘,ఏ(𝑎ఏ)𝜃 + (𝑐௘,ఏ(𝑎ఏ) + 𝑐ோఏ)�̇�൧
்
     (15) 

 
to explore the performance of GSI, accounting for its inherent nonlinear behavior.  
 
3  Results 
 

In this section, the benchmark model proposed in [14] and [24] (see Figure 1b) is 
investigated for the study of the efficiency of the geotechnical seismic isolation 
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system made of rubber soil mixture (GSI-RSM) as a seismic protection tool through 
a nonlinear, albeit simplified, approach. The structure geometrical and mechanical 
parameters provided in [14] necessary for the model are reported in Table 1. The 
structure undergoes ground acceleration. The Northridge (1994) ground motion time-
history scaled to 1g has been used first for the application to enable direct comparison 
with results from [14]. 
 
 

Data Value 

H [m] (height of the superstructure) 10 

𝑚 [Mg] mass of the superstructure 650 

𝑚ி [Mg] mass of the foundation 260 

𝐼ி[Mg m2] 5.62x103 

TFB [s] fundamentalperiod of the superstructure assumed fully fixed 0.37 

damping ratio of the superstructure 0.05 

 
Table 1: Mechanical and Geometrical Parameters of the structural model 

 
 

The proposed equivalent nonlinear springs and dashpots (equations (7)-(10)) require 
the knowledge of  𝑉௠௔௫ and 𝑀௠௔௫ that in principle are derived from a nonlinear static 
analysis. For the purpose of the present application, they have been determined using 
the equivalent stiffness and damping provided in [14]. Tables 2 and 3 show the 
relevant soil and foundation equivalent parameters, pertinent to the natural soil and 
for the GSI-RSM, which were used for the calibration of the Presiach nonlinear 
elements.  
 
 

Data Value 

𝑘௛,ா௅ [kN/m] equivalent stiffness 304x103 

𝑐ோ௛ [kNm/s] radiation damping 25.3x103 

𝑘ఏ,ா௅ [kNm] equivalent stiffness 17.3x106 

𝑐ோఏ [kNms] radiation damping 1110x103 

ζ௘௤ (%) (equivalent damping ratio) 22.8 

𝐺/𝐺௠௔௫  0.038 

 
Table 2: Soil and Foundation mechanical parameters for Natural Soil [14] 

 
 



7 
 

  
Data Value 

𝑘௛,ா௅ [kN/m] equivalent stiffness 87.7x103 

𝑐ோ௛ [kNm/s] radiation damping 7.27x103 

𝑘ఏ,ா௅ [kNm] equivalent stiffness 2.82x106 

𝑐ோఏ [kNms] radiation damping 326x103 

ζ௘௤ (%) (equivalent damping ratio) 28.7 

𝐺/𝐺௠௔௫  0.086 

 

Table 3: Soil and Foundation mechanical parameters for GSI-RSM [14] 
 

 

Specifically, the following positions have been made for model calibr ation 
 

𝑘௘,௛൫𝑎௛,௠௔௫൯ = 𝑘௛,ா௅;   𝑘௘,ఏ൫𝑎ఏ,௠௔௫൯ = 𝑘ఏ,ா௅; 
 𝜂௘,௛൫𝑎௛,௠௔௫൯ = 𝜂௘,ఏ൫𝑎ఏ,௠௔௫൯ = 2 ζ௘௤.                                 (16) 

 
where 𝑎௛,௠௔௫ and 𝑎ఏ,௠௔௫ are the maximum foundation displacement and rotation, 
respectively. Those quantities are not known a priori, so they have been determined 
iteratively. Figures 2 show the comparison of relevant response parameters of the 
benchmark structure with and without the GSI-RSM system for both equivalent linear 
[14] and nonlinear models.  
 

As the nonlinear springs have been calibrated to match the equivalent translational 
and rotational base stiffness, the responses overall match fairly well with the results 
from the equivalent linearization, highlighting the accuracy of the proposed nonlinear 
model. Minor differences can be observed at the initial segment of the time histories 
as the nonlinear stiffnesses (and dashpots) did not reach their target values.   

 
Larger differences can be observed in the moment-base rotation loops shown in 

Figure 3, which highlights how the nonlinear model realistically follows the evolution 
of stiffness reduction until the convergence to the target values. It is noted that once 
the model has been calibrated imposing equations (16) the value of the limiting 
average horizontal load, 𝑉௠௔௫ , and the average maximum attainable values of 
overturning moment, 𝑀௠௔௫, of the foundation are also determined leading 
respectively to the values: 𝑉௠௔௫ = 3.29 × 10଺𝑁 and : 𝑀௠௔௫ = 3.41 × 10଻𝑁𝑚, 
respectively. Those values have been used for model verification determining the 
response of the benchmark structure to a different ground motion time history, namely 
the Duzce, Turkey 1999 earthquake, without imposing equations (16). As it can be 
seen from Figures 5 and 6 the results are in excellent agreement with those determined 
in [14] manifesting the robustness of the proposed nonlinear spring model. 
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Figure 2: Comparison between the response of the benchmark structure forced by 
the Northridge 1994 earthquake with and without the GSI-RSM system using the 
Equivalent Linearization (EL) and the simplified Nonlinear approach: a) relative 

displacement, b) base displacement, c) base rotation and d) base moment 
 
 
 

 
 

Figure 3: Comparison between the moment-base rotation loops with and without the 
GSI-RSM system using the Equivalent Linearization (EL) approach and the 

simplified Nonlinear (NL) 
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4  Conclusions and Contributions 
 

In this paper, the structure-GSI interaction is explored through equivalent nonlinear 
springs and dashpots determined through the Preisach formalism. Closed form 
solutions have been determined using a harmonic balance approach leading to 
nonlinear stiffness and dashpot dependent on the amplitudes of the base translation 
and rotation. To highlight the versatility of the proposed nonlinear elements a simple 
calibration has been performed to match the equivalent foundation stiffness and 
damping determined in literature for a benchmark structure. The results are in 
excellent agreement once reached the base response peak values manifesting, as 
expected, discrepancies for lower values of the base response amplitude. The 
robustness of the proposed model has been verified using a different ground motion 
time history without the necessity to recalibrate the nonlinear springs. Excellent 
matching highlighted the versatility of the model. Different results can clearly be 
observed for different calibrations using the limiting average horizontal load and 
average maximum attainable values of overturning moment of the foundation from 
pushover analysis of analytical formulations. Future works will focus on comparison 
with experimental data to highlight the importance of an accurate nonlinear model of 
the GSI system adopting the full hysteretic Preisach model. 
 

 
 
 
 

Figure 4: Comparison between the response of the benchmark structure forced by 
the Duzce, Turkey 1999 earthquake using the Equivalent Linearization (EL) 

approach and the simplified Nonlinear (NL) springs a) relative displacement, b) base 
displacement, c) base rotation and d) base moment 

𝑡 [𝑠] 𝑡 [𝑠] 

𝑡 [𝑠] 𝑡 [𝑠] 

𝑢
௥

௘
௟ 

[𝑚
]

𝑎) 𝑏) 

𝑐) 𝑑) 

𝑢
ி

 [
𝑚

] 

𝜃
 

𝑀
ி

 [
𝑁

 𝑚
] 



10 
 

 
 

 
 
 
 
 

Figure 5: Comparison between the moment-base rotation loops of the benchmark 
structure forced by the Duzce, Turkey 1999 earthquake using the Equivalent 

Linearization (EL) and the simplified Nonlinear (NL) approach 
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