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Abstract

Heat conduction analyses on discontinuities via Peridynamics require a large amount
of calculations. In this study, we propose a vectorization process to solve the peri-
dynamic governing equations for quasi-static heat conduction analyses and suggest
the optimal iterative solver. The heat equation is expressed by using peridynamic dif-
ferential operators, and simplified for thermally isotropic simulations. The governing
equation represented with compressed sparse row matrices consists of an off-diagonal
sparse matrix and two diagonal matrices. Using vectorized operations, these matrices
are further split into matrices related to the geometry. Four iterative solvers such as
BiCG, BiCGSTAB, GMRES, and LGMRES are applied to solve the vectorized equa-
tion, and LGMRES demonstrates the best convergence times with the least number
of calculation steps for several types of geometries. The temperature fields yielded
by LGMRES are in good agreement with the results by the finite element analyses
in the quasi-static thermal condition. This proposed vectorization procedure and the
optimized iterative solver on Peridynamics will be useful to simulate the fully coupled
thermomechanics.
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1 Introduction

Quasi-static heat conduction is a thermodynamic process that is almost in equilib-
rium at every moment and is considered when the temperature changes very slowly
or the heat capacity is very small. Since this phenomenon can occur with the destruc-
tion of the structures, quasi-static heat conduction analyses near the discontinuities
are needed to be studied. For example, cracked in concrete structures can be devel-
oped by freezing and thawing due to daily temperature changes, and the chips that
separate from the metals during the cutting process might quickly reach thermal equi-
librium [1].

Peridynamics is a non-local method that constructs a continuum with particles in-
stead of meshing [2, 3] and can be applied for heat conduction analyses on disconti-
nuities. To calculate the physical quantity of one node, neighboring nodes within the
surrounding area called the horizon are used. Since the partial derivative terms of the
classical governing equations are converted to integral forms concerning neighboring
nodes, physical quantities on discontinuities can be calculated [4]. However, due to in-
tegration over neighboring nodes, Peridynamics needs more computational resources
than the finite element method (FEM) which only considers the nodes that belong to
each element [5]. This cost increases more as the number of nodes or the neighboring
nodes in each horizon increases. Therefore, a method to improve the computational
performance of quasi-static thermal analyses using Peridynamics is required.

The most computationally intensive task in the entire process is solving the dis-
cretized governing equations. The amount of the computation can be mitigated de-
pending on the solver employed for the matrix equations. While exact solutions for
linear equations can be achieved by directly inverting the matrix, the computational
complexity increases rapidly with the matrix size. In contrast, iterative solvers start
with an initial guess and iteratively refine the answer until a satisfactory solution is
obtained. Although the solution may diverge, this approach can significantly reduce
computation time [6]. This solver can demonstrates better performance with large and
sparse matrices commonly used in scientific computing such as FEM, Peridynamics,
and others. Several iterative solvers have been developed to solve various linear equa-
tions. BiConjugate Gradient (BiCG) extends the Conjugate Gradient (CG) method [7]
used in commercial programs such as Ansys as well as LS-DYNA to solve asymmetric
problems, and BiCG STABilized (BiCGSTAB) improves the stability and robustness
of BiCG [8]. In addition, Generalized Minimal RESidual (GMRES) is specialized for
solving asymmetric problems [9]. To save the calculation memory of GMRES, Loose
GMRES (LGMRES) was also developed [10].

The computational load of fundamental matrix operations, such as multiplication
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and summation, is also notable for large matrices. To alleviate the memory usage and
calculation cost, several methods have been proposed in various kinds of languages,
including Fortran, Python, and Julia. Data access and CPU cache utilization can be
optimized by storing matrix elements in contiguous blocks of memory [11]. In addi-
tion, large and sparse matrices can be condensed by compressed sparse row (CSR) or
compressed sparse column (CSC) representations that record only nonzero elements.
Mathematical operations involving matrices allocated in the memory can be optimized
using vectorized calculations. Programming libraries for scientific computing such as
Linear Algebra PACKage (LAPACK) in Fortran or SciPy in Python are optimized for
such vectorized operations. The computation efficiency can be significantly improved
by avoiding the use of nested loops.

This study describes a method to vectorize the governing equations to improve
the computational performance for quasi-static heat conduction analysis using Peridy-
namics. Additionally, for each of the four iterative solvers, we compare the solution
time for each solver using three initial guesses. To compare the influence of the shape
of the problem being analyzed, two types of examples are used, and the spacing be-
tween nodes is changed to four types.

2 Quasi-static heat conduction using Peridynamics

A partial differential governing equations for heat conduction in a continuum is called
the heat conduction equation or heat equation. For a thermally isotropic material in
three-dimensional space, ignoring heat generation inside the body, this equation can
be expressed as

ρcvṪ (x, t) = kT
∂2T (x, t)

∂x2
i

. (1)

In the tensor notation, the integer i varies from 1 to 3. The notation T (x, t) is the
temperature of the node x at time t, and the material properties ρ, cv, and kT are
density, specific heat at constant volume, and thermal conductivity, respectively.

Peridynamic differential operators (PDDOs) express the partial derivatives of an
arbitrary field value approximated by Taylor series expansions (TSEs) as a linear com-
bination of neighboring node values and can be used to convert the heat conduction
equation to a peridynamic integral equation [12]. Using PDDO derived by the second-
order TSE in three dimensions, the first- or the second-order spatial derivative for the
field value ϕ (x) are written as

∂p1+p2+p3ϕ (x)

∂xp1
1 ∂xp2

2 ∂xp3
3

=

∫
Hx

gp1p2p32 (ξ) (ϕ (x′)− ϕ (x)) dV ′, (2)

where x′ is position of neighboring node in the horizon Hx and ξ = (ξ1, ξ2, ξ3) =
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x′ − x. A polynomial gp1p2p32 is called peridynamic function and defined as

gp1p2p32 (ξ) =
∑

(q1q2q3)∈S2

ap1p2p3q1q2q3
(x) · wq1q2q3 (∥ξ∥) · ξ

q1
1 ξq22 ξq33 , (3)

where the set of integer pairs is given as

S2 = {(100), (010), (001), (200), (020), (002), (110), (101), (011)} . (4)

The coefficient of each term ap1p2p3q1q2q3
(x) depends on the node, with details of calcula-

tions provided by Madenci et al. [13]. wq1q2q3 (∥ξ∥) is a weighting function and has
been used regardless of the direction of differentiation [14–16].

The heat conduction equation in three-dimensional space for a thermally isotropic
material is reformulated by PDDO as

ρcvṪ (x, t) = kT

∫
Hx

gII2 (ξ) (T (x′, t)− T (x, t)) dV ′, (5)

where
gII2 (ξ) = g2002 (ξ) + g0202 (ξ) + g0022 (ξ) . (6)

In a quasi-static process that reaches equilibrium very slowly at each time step, the
rate of change of temperature is close to zero. By approximating the peridynamic
integral equation into the summation for each node, Eq. 5 can be discretized as

0 = kT ·G ·T, (7)

where

[G]ij =


gII2 (ξij)∆Vj for j : xj ∈ Hxi

,
−
∑

k:xk∈Hxi
gII2 (ξik)∆Vk for i = j,

0 else,
(8)

and where ξij = (ξij,1, ξij,2, ξij,3) = xj − xi, ∆Vi is the finite volume occupied by the
node xi, and the length of the temperature field vector T for all nodes is equal to the
total number of nodes. To impose Dirichlet boundary conditions, Eq. 7 can be divided
into boundary and body parts as

0 =

[
GDD GDB

GBD GBB

]
·
[
TD

TB

]
, (9)

where subscriptions D and B represent Dirichlet boundary and the body nodes, re-
spectively. Thus, the temperature field of the body part can be obtained by solving the
linear equation written as

GBB ·TB = −GBD ·TD. (10)
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3 Implementation of vectorization and iterative solvers

In this section, we explain the methodology of constructing the discretized governing
equations using Peridynamics through vectorized computations as well as evaluating
the performance of each iterative solver employed for solving the linear equations for
heat conduction.

3.1 Vectorization of peridynamic equations

The matrix G in Eq. 7 is a function of the displacement vector from each node to
its neighbors and the volume occupied by each node. To decompose this matrix into
matrices about the shape of the object, we rewrite this matrix as

G =
(
gDiag + gOD

)
· diag(V), (11)

where [
gDiag

]
ij
= − 1

∆Vi

 ∑
k:xk∈Hxi

gII2 (ξik)∆Vk

 · δij, (12)

[
gOD

]
ij
=

{
gII2 (ξij) for j : xj ∈ Hxi

,
0 else, (13)

and the element of the vector V is the volume of the node ∆Vi. The function diag(v)
returns a diagonal matrix from the vector v, and δij is Kronecker delta. The off-
diagonal matrix gOD can be divided into matrices along each derivative direction
(q1q2q3) as

gOD =
∑

(q1q2q3)∈S2

gOD
q1q2q3

, (14)

where [
gOD
q1q2q3

]
ij
= aIIq1q2q3 (xi) · wq1q2q3 (∥ξij∥) · (ξij,1)

q1 (ξij,2)
q2 (ξij,3)

q3 , (15)

and
aIIq1q2q3 (xi) = a200q1q2q3

(xi) + a020q1q2q3
(xi) + a002q1q2q3

(xi) . (16)

Using Eq. 15, gOD
q1q2q3

can be vectorized as

gOD
q1q2q3

= diag
(
aII
q1q2q3

)
·
(
Wq1q2q3 : Ξ

(q1)
1 : Ξ

(q2)
2 : Ξ

(q3)
3

)
, (17)

where[
aII
q1q2q3

]
i
= aIIq1q2q3 (xi) , [Wq1q2q3 ]ij = wq1q2q3 (∥ξij∥) ,

[
Ξ

(qk)
k

]
ij
= (ξij,k)

qk , (18)
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Figure 1: Procedures to construct peridynamic governing equations from matrices of
the shape of an object using vectorized operations.

and the double dot product operator (:) in Eq. 17 performs element-wise multiplication
between two matrices.

Since the weighting matrix Wq1q2q3 is related only to the distance to neighbor-
ing nodes, this matrix also can be easily constructed by vectorized operations. In
this study, we adopt the following cubic spline function for all derivative directions
(q1q2q3) as

wq1q2q3 (∥ξ∥) =

{
2
(

∥ξ∥
δ

)3

− 3
(

∥ξ∥
δ

)2

+ 1 for 0 ≤ ∥ξ∥ ≤ δ,

0 for δ < ∥ξ∥ ,
(19a)

where δ is the size of the horizon Hx.

The diagonal matrix gDiag can be obtained by adding all the elements of each row
in the matrix diag(V)−1 · gOD · diag(V), and this row-wise summation can be easily
calculated in the CSR matrix. Therefore, peridynamic linear equations for quasi-static
heat conduction can be constructed using vectorized operations that are advantageous
to the CSR matrix without accessing elements stored in the matrix or using nested
loops. Figure 1 shows the process of constructing the discretized peridynamic equa-
tions from matrices that store the geometry of an object. The number in parentheses
refers to the size of the matrix, and n is the total number of nodes.

3.2 Performance comparison of iterative solvers

For two heat conduction examples, the peridynamic heat conduction equation (Eq. 10)
is solved using four iterative solvers to compare calculation performance. Figure 2
shows the shape and boundary condition of a plate with a hole and the L-shaped panel,
respectively. The temperature of the node adjacent to the red side is set to 1 °C, and the
blue part is 0 °C. The thicknesses of the plate and the panel are 25 mm and 100 mm,
respectively.

To compare the performance depending on the size of the matrix, three distinct
node spacings are chosen. The size of the horizon is fixed to four times the shortest
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Figure 2: Two heat conduction examples: plate with a hole (a) and L-shaped panel
model (b).

spacing of each case to maintain the number of neighboring nodes within the hori-
zon. The solvers to be compared are BiCG, BiCGSTAB, GMRES, and LGMRES. A
preconditioner to improve convergence speed is not used, and the initial guess of the
solution for all nodes is set to 0.5°C which is the average value of the temperature
boundary conditions. The version of Python is 3.11.3, and the analyses are performed
in Intel Xeon Gold 6326 CPU with 256 GB RAM. The convergence condition of the
solvers for the linear equation A · x = b is set as

∥A · x− b∥ ≤ 10−5 × ∥b∥ , (20)

where ∥v∥ is Euclidean norm of a vector v. The solver with the shortest convergence
time is determined as optimal, and the total number of time steps and the average time
required for each step are then compared. In addition, the accuracy of the optimal
solver is verified by comparing the temperature field obtained by Peridynamics with
FEM results.

4 Results

In Table 1, nB is the number of body node, tc refers to the convergence time, and the
highest values of performance indices are shown in bold for each case. Regardless of
the objects or the sizes of the matrix, LGMRES demonstrates the shortest convergence
time, up to 14.5 times faster than the subsequent shortest method, BiCGSTAB. The
number of calculation steps is also the smallest, not exceeding six. The computation
time for each step is the shortest for BiCG, but all except GMRES are similar. Figure 3
shows the temperature field of each example obtained by LGMRES, and these results
are almost identical to the results of finite element analyses.
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Example nB Sparcity (%) Solver tc (sec) Steps tc/Steps

Plate
with a hole

4,560 98.18

BiCG 1.748 27 0.0647
BiCGSTAB 1.453 21 0.0692

GMRES 5.063 31 0.163
LGMRES 0.214 2 0.107

11,232 99.02

BiCG 16.479 33 0.499
BiCGSTAB 13.083 26 0.503

GMRES 34.562 39 0.886
LGMRES 1.499 3 0.500

23,800 99.56

BiCG 61.125 44 1.389
BiCGSTAB 47.390 34 1.394

GMRES 190.437 62 3.072
LGMRES 4.397 3 1.466

L-shaped
panel

9,280 99.70

BiCG 14.449 60 0.241
BiCGSTAB 11.483 47 0.244

GMRES 47.124 84 0.561
LGMRES 1.059 4 0.265

18,250 99.84

BiCG 62.804 74 0.849
BiCGSTAB 50.187 57 0.880

GMRES 254.976 130 1.961
LGMRES 3.609 4 0.902

47,600 99.94

BiCG 524.833 98 5.355
BiCGSTAB 391.037 71 5.508

GMRES 2397.561 201 11.928
LGMRES 26.991 5 5.398

Table 1: Comparison of iterative solver performance in peridynamic quasi-static heat
conduction analyses across various geometries.

5 Conclusions

In this study, we present a process to vectorize the peridynamic governing equations
for quasi-static heat conduction analyses. The heat equation discretized via peri-
dynamic differential operators is used as the particle-based governing equation for
isotropic thermal analyses. The matrix of a linear governing equation is expressed
as a linear combination of one off-diagonal sparse matrix and two diagonal matri-
ces. The off-diagonal matrix is only composed with the peridynamic functions of the
differential operators. Using matrix multiplication and double dot product, the off-
diagonal matrix is decomposed into a coefficient of the peridynamic function matrix,
a weighting matrix, and matrices of relative displacement between each node and its
neighbors. By combining these matrices with vectorized operations, the discretized
governing equations consist only of the matrices regarding the geometry of the object.

To find the optimal iterative solver for large and sparse peridynamic equations,
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Figure 3: Temperature fields via peridynamic quasi-static heat conduction: plate with
a hole (a) and L-shaped panel model (b).

we compare the convergence time, the number of steps, and the time required for each
step of four methods: BiCG, BiCGSTAB, GMRES, and LGMRES. No preconditioner
is applied and the average value of the boundary conditions is used as an initial guess
of the solution. The temperature fields of two heat conduction examples are obtained,
and the analyses are performed on the three different spacings. As a result, LGMRES
solver shows the shortest convergence time and the smallest number of steps for all
the geometries, and the time consumption of each step is similar to the times by other
methods. The temperature fields obtained by this method are in good agreement with
the results from the finite element analyses. Therefore, to achieve efficient solutions
for quasi-static heat conduction problems, the LGMRES iterative solver proves to be
an optimal choice. This vectorized framework for Peridynamics will be extended to
fully coupled thermomechanics in future work.
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