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Abstract 
 

This paper presents an efficient finite element methodology for the static analysis of 

semi-infinite structures, addressing the common issue in structural engineering where 

the region under analysis is significantly smaller than its surrounding medium. By 

dividing the domain into proportionally dimensioned layers of elements and 

maintaining a consistent or proportional stiffness matrix between layers, the proposed 

method utilises the finite element analysis of only a single layer for predicting the 

static response of the entire domain invoking the concept of periodicity. Employing 

eigenvalue analysis, the method examines the relationship between nodal deflection 

across different layers and mechanical behaviours including the transient and steady-

state response. This facilitates the extraction of recurrent modes, which then 

characterise the overall static response through modal superposition. The 

methodology is notably efficient in managing the extensive degrees of freedom 

typically associated with semi-infinite domains, even when employing a fine mesh at 

the loaded end to enhance the capturing of local effects. The validity of this method 

is demonstrated through the analysis of a sample problem involving a hole in an 

infinite plate, with results consistently verifying the accuracy. Furthermore, a 

foundation problem is examined, underscoring the broader applicability of the 

proposed method in infrastructural contexts.  
 

Keywords: finite element method, semi-infinite domain, single-layer modelling, 

structural periodicity, static analysis, eigenvalue analysis, modal superposition, 

computation efficiency. 
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1  Introduction 
 

The analysis of solid mechanics systems with a semi-infinite domain is inherently 

demanding, yet it is required in numerous structural engineering and soil-structure 

interaction problems. Particularly challenging are scenarios where boundary effects 

extend significantly beyond the primary region of interest [1]. Traditional finite 

element analysis approaches this by extending the mesh considerably and applying 

fixed displacement or constant stress boundary conditions at the remote boundary. 

This typically leads to excessive computational demands due to the large number of 

degrees of freedom (DOFs), especially when employing fine meshes to enhance 

accuracy. Such traditional numerical method often encounters computational limits, 

highlighting the need for more efficient modelling techniques. 
 

Several advanced methodologies have been developed to overcome these 

challenges, including infinite elements method [2], boundary element method [3], 

wave finite element method [4], and discrete Fourier transform [5]. The infinite 

element method [2] employs specialised infinite shape functions to map the element 

geometry from the finite mesh to infinity. An additional decay function is then 

included in the infinite shape function to allow field variables interpolated at the finite 

boundary to attenuate as they extend towards infinity. Therefore, the effectiveness of 

the method depends heavily on the integration of infinite elements into the finite 

element mesh and the appropriate selection of decay functions for field variables. 

Although this method reduces nodes in areas remote from the primary zone of interest, 

it still requires a fine mesh of elements at the finite boundary. The boundary element 

method [3] applies discretization on the boundary only and therefore reduces the 

problem dimensionality. The partial differential equations governing the problem are 

transformed into integral equations that describe how effects propagate from a source 

point to observation points in the domain using Green’s function. The integration 

equations of field variables, which inherently satisfy the infinite boundary conditions, 

lead to linear equations at the collocation nodes at infinity to be solved. However, it 

results in a fully populated matrix representing the system of equations, thus it can be 

computationally expensive when fine discretisation is employed at the boundary. The 

most developed method utilising structural periodicity is the wave finite element 

method [4]. In this method, displacements and forces at the boundaries of each 

element are coupled, premised on the assumption that a characteristic free wave 

traverses the periodic system with a propagation constant. Consequently, the analysis 

necessitates the examination of only a single element. Nonetheless, this method is 

predominantly employed in the dynamic analysis of structures. Similarly, the discrete 

Fourier transform [5] uses a complex exponent to map the periodic displacement from 

an infinite boundary to that of a unit cell, facilitating the study of the static response 

of an infinite periodic structure. However, this method requires the inversion of the 

Fourier transform to solve the displacement at internal layers. This inversion is 

typically performed numerically, and its effectiveness is heavily dependent on the 

number of approximated integration points. In addition, the complex exponent also 

implies that the deformation amplitude is only transiently decaying over space with 

trigonometric oscillation in phase, while the steady-state deformation is ignored. 
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This paper is aimed at reducing the complexity of static analysis for semi-infinite 

domains by focusing on a single substructure layer, drawing on some of the above 

methods that incorporate periodicity. Finite element analysis is confined to the first 

layer of elements used to represent the subdomain, as illustrated in Figure 1. Mesh 

periodicity is invoked to reveal similar deformation patterns across each layer of 

elements. Eigenvalue analysis is applied to recover the static deformation modes that 

recur periodically or steadily throughout the mesh. This analysis not only addresses 

transient deformation across space but also examines the potential mechanisms of 

rigid body translation and uniform tension and compression within the domain, so-

called steady-state modes. The method is validated through the analysis of stress 

concentration in a perforated plate under uniaxial compressing, demonstrating its 

effectiveness. Additionally, it is applied to a 2D simple foundation problem using 

axis-symmetric elements. The method is also extendible to model 3D semi-infinite 

problems, indicating a significant potential for enhanced modelling of a broader range 

of structural applications. 

 

 
 

Figure 1: Modelling example of a semi-infinite problem 
 

2  Methods 
 

The problem of a semi-infinite domain can be conceptualised as a structure composed 

of an infinite array of representative substructures which are meshed uniformly or 

proportionally and possess an identical number of nodes. In other words, the stiffness 

matrixes are equal or proportional, depending on their geometric characteristics. By 

leveraging periodicity, modelling a single layer suffices to describe the mechanical 

behaviour of the entire structure. 
 

The eigenvalue method recovers the deformation patterns under static loading that 

exist periodically layer-by-layer. The field deformation is represented as a 

superposition of those patterns, which are also defined as static modes. According to 

the transmission characteristics, the modes can be classified into transient modes and 

steady-state modes. Transient modes capture localised effects stemming from loads 

and supports, characterised by an initial amplitude that diminishes progressively until 

it dissipates completely. Conversely, steady-state modes represent a continuous 

response throughout the space, encapsulating the overall structural behaviour. These 

modes may manifest constant deformations across layers or vary progressively (e.g. 

linearly), corresponding to rigid body motions, constant strain modes, etc. While the 

number of steady-state modes is constant and depends on the specific type of problem, 
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the number of transient modes complements the number of steady-state modes to 

equal the total number of DOFs for a representative layer. The underlying logic of the 

method involves embedding the periodic correlation of deformation between layers 

into the eigenmatrix to extract the transient and steady-state modes. 
 

Figure 2 shows a schematic diagram of two consecutive mesh layers (substructures) 

with three sets of boundary DOFs. The basic formulation for a substructure ( )k  is: 
 

 

( )

( )

( )

( )

( )
        

=    
        

K K d f

K K d f

k k k

ll lr l l

k k
rl rr r r

 (1) 

where  K , d , and f  are the stiffness matrix, displacement vector and force vector, 

respectively. The subscripts l  and r  denote the left and right sides of the mesh layer. 

Any internal DOF can be condensed given no external loading is applied to it. Mesh 

periodicity implies that for two successive layers 
( ) ( )1k k


+
=K K , where   is a 

proportionality factor. If the element geometry is enlarged by a factor of   between 

layers, it can be shown that 1 =  for 2D plane stress/plane strain problems, while 

 =  for axisymmetric problems. 

 

 
 

Figure 2: Schematic representation of two consecutive mesh layers of a semi-

infinite domain 
 

The continuity of displacements 
( ) ( )1k k

r l

+
=d d  and equilibrium of forces 

( ) ( )1
0

k k

r l

+
+ =f f   must be satisfied on the 

thi  interface so that: 
 

 
( ) ( ) ( ) ( )

1 1( ) 0
k k k k

rl i rr ll i lr i − ++ + + =K d K K d K d   (2) 

Based on Bloch’s theorem [6], the transient modes are recovered by assuming that 

the nodes at the consecutive boundaries have proportional displacements, with the 

amplitude multiplied by a constant propagation ratio  : 
 

 1i i+ =d d   (3) 

Combining with Equation (2) leads to the following quadratic eigenproblem: 
 

 ( )2

lr rr ll rl t     +  + + = K K K K 0   (4) 

If there are n  DOFs at the 
thi interface, solving the eigenproblem gives 2n  

eigenvectors. Linearisation of the quadratic eigenproblem leads to a non-symmetric 

eigenmatrix so that the eigenvalues ( ) are complex numbers. This indicates that 
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there will be both amplitude changes and trigonometric phase oscillations across 

layers. For a magnitude of   smaller than 1, the corresponding transient mode t

decays with increasing layer i , and the deformation is localised at the place of 

excitation. For the magnitude larger than 1, the influence of t  is concentrated at the 

other end of mesh. If 1 = , there is no transient response in the domain since t  

remains constant. Different formulations are needed to recover these non-transient 

modes, which basically extract the static-steady modes. 
 

Constant modes 0  imply that all the layers have the same nodal displacements, 

and these modes are typically rigid body modes. The constant modes can be recovered 

in the same manner as transient modes with 1 =  by solving the eigensystem of 

consK  : 
 

 ( ) 0 0lr rr ll rl cons + + + = =  K K K K K 0    (5) 

The linear modes describe the scenario where there is a base modal 1 and an 

additional constant deformation 0  a when it propagates to the next layer, where a  

accounts for the requisite combination of different constant modes. Due to the linear 

propagation of displacement over the domain space, the existence of linear modes 

indicates that the incremental displacement between the initial and infinite boundaries 

is infinite. To obtain the linear modes, Equation (2) can be transferred to: 
 

  1 0 1 02cons ll lr rr cons temp + + +  + K K K K K K 0   a = a =   (6) 

where 
tempK  accounts for the linear combination of the constant modes in the 

eigensystem. Adding orthogonality conditions between the obtained constant modes 

0 and any linear mode 1 0+   a , the eigenvalue problem is formed as: 
 

 
1 1

0 0 0

cons temp

linT T

     
= =    

     

K K
K 0

 

   a a
  (7) 

Using the propagation law for each type of mode, starting from the displacement 

generated at the initial interface where external loading is applied, the resulting modal 

deflection at the 
thi interface is illustrated in Table 1. 

 

Modes Loaded interface thi  

Transient 
t  i

t   

Constant 
0  0  

Linear 
1  1 0i+ a   

Table 1: Modes at arbitrary layers 
 

There are 2n  transient and steady-state modes in total, which correspond to the 

number of DOFs of a single layer of elements. The static response of a structure can 

be expressed as a linear combination of these mode shapes. The weight for each mode 
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is calculated by solving n  force equilibrium conditions at the loaded end/interface 

and n displacement compatibility conditions at the remote end/interface. Given this, 

the displacement, strains, and stresses at any location in the domain can be recovered. 
 

3  Illustrative Examples 
 

3.1  Infinite plate with a circular hole 
 

First, an infinite plate with a central circular hole subjected to uniaxial loading is 

analysed to verify the results against Kirsch's solution [7]. The influence of the hole 

on this prestressed domain can be modelled by applying the same stress field to the 

hole surface which makes it free of tractions. Figure 3 shows a proposed mesh for the 

symmetrical section of the infinite plate. 4-noded bilinear plane stress elements are 

used, where each layer comprises 6 elements. Despite the expanding geometry of the 

elements with 1.5 = , the stiffness matrices remain constant for all layers. Generally, 

for a plane stress problem, there are two constant modes which correspond to rigid 

body translations in the X and Y directions, two linear modes which correspond to the 

constant stretching in both directions, and a series of transient modes. However, since 

the symmetry conditions are applied (y/x displacement is restrained along the x/y axis), 

there are only transient modes in this case. 

 

 
 

Figure 3: Proposed mesh of the infinite plate with aspect ratio 1.5 =   
 

An initial compressive stress field 0 1000 Pax = −  was applied. The stress 

distributions of the plate subjected to only the hole surface loading are shown in 
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Table 2. Stress concentration occurs primarily at the edge of the hole, diminishing to 

minor levels at a distance of one diameter from the edge, and becoming negligible at 

twice that distance. 
 

After superposing the initial compressive state with the hole-induced transient 

stress, the principal stresses at the Gauss points along the approximating horizontal 

and vertical lines, which are at respective angles of 3.17° and 86.83°, are shown in 

Figure 4. This representation accurately illustrates the stress concentration factor, 

which approximates 3 in the vertical direction and rapidly decreases as the distance 

from the hole increases. The overall trends in the predictions of the proposed method 

compare favourably to the theoretical results, demonstrating that this simplified 

method facilitates an efficient and accurate representation of the static response in 

semi-infinite structural problems. There are oscillating deviations for the minimum 

principal stresses in the horizontal direction, a discrepancy that is attributed to the 

finite element approximation. Enhancements in accuracy can be realized through the 

use of higher-order elements or by refining the mesh within a typical layer.  
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Table 2: Hole-induced stress distributions 
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It is worth noting that the aspect ratio of the elements corresponds to an elongated 

rectangular shape with the geometric layer proportionality factor 1.5 = . A better 

choice of   can improve the results, since square elements generally produce more 

accurate results than rectangular elements in FE analysis. Therefore, the same analysis 

has been carried out with 1.3 =  for approximately square elements. The results of 

stress distributions and principal stress variation over space are shown in Table 2 and 

Figure 5, respectively. Evidently, with the same computational demand, the square 

element gives a smaller deviation and better resolution. 
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Figure 4: Comparison of principle stresses over space for 1.5 =  
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Figure 5: Comparison of principle stresses over space for 1.3 =  
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3.2  Soil foundation 
 

This method is then applied to model a foundation problem with axis-symmetric 

elements. A uniform stress 1000 kPay = −  is applied to the surface of the circular 

foundation. In this case, the stiffness matrix increases linearly across each layer, with 

the proportionality factor   equalling the layer geometric ratio  . There is only one 

constant mode which represents the vertical rigid body movement of the mesh. The 

overall deformation is illustrated in Figure 6. As shown in Figure 7, the accuracy of 

the model is significantly improved through h-refinement, while the computational 

burden remains low since only a single layer of elements is analysed. This exemplifies 

the capability of the proposed method to substantially reduce computational effort, 

even when employing a highly refined mesh. 

 

 
 

Figure 6: Deformed foundation under uniform vertical stress 

 

 (a)   (b) 
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Figure 7: Vertical stresses in soil with (a) coarse mesh; (b) fine mesh 
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4  Conclusions 
 

This paper presents a finite element method tailored for simulating semi-infinite 

domain problems, leveraging structural periodicity to enhance computational 

efficiency. The domain is strategically divided into layers of proportionally 

dimensioned elements, ensuring that the stiffness matrix between layers remains 

constant or proportional. The method hinges on calculating the stiffness matrix of a 

single layer of elements to depict the static response of the entire domain, providing a 

computationally economical solution even when employing a fine mesh. It adeptly 

addresses the challenges posed by the extensive DOF typically associated with semi-

infinite domains. Utilising eigenvalue analysis, the relationship between nodal 

deformation across different layers and mechanical behaviours including transient 

deformation, rigid body movement, and constant strains are examined. This facilitates 

the identification and extraction of recurrent modes involved in force transmission 

within the periodic structure, with the overall static response obtained using modal 

superposition. This method markedly reduces the need for additional elements and 

nodes in areas remote from the primary zone of interest, optimizing resource 

utilisation. However, it is predominantly applicable to linear problems involving 

homogeneous materials. The practical validity and advantages of the approach are 

demonstrated through a simulation of an infinite plate with a central hole under 

uniaxial loading. The resulting stress distributions closely align with theoretical 

predictions, demonstrating the efficacy of the method. Furthermore, the technique is 

applied to analyse a simple foundation problem and shows the computational 

superiority with a fine mesh. This promising approach can be extended to model other 

complex structural problems with a semi-infinite domain, including three-

dimensional problems, such as soil-structure interaction and tunnelling, paving the 

way for broader applications in structural engineering. 
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