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Abstract

In this paper, we focus on the size optimization of frame structures with the aim of
minimizing the structural weight under the necessary conditions for serviceability
and usability, such as deformation and stress constraints. Using the Finite Element
Method, this approach leads to the area of nonlinear programming with a nonlinear
cost function as well as nonlinear inequality constraints. We tackle this issue using
Inexact Restoration (IR). Unlike traditional optimization methods, the IR algorithm
separates the feasibility restoration from the objective function improvement, allow-
ing for a more efficient search for the optimal solution. This method is particularly ad-
vantageous in dealing with the complex, non-linear behavior of beam structures with
various constraints. We review the theory, present our implementation and compare
results using a benchmark.
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restoration, gradient method, nonlinear programming
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1 Introduction

The optimization of building structures has been a widely extended topic dating back
to the beginning of the last century and remains one of the most widespread topics
not only in structural mechanics [7]. The current direction of the issue closely fo-
cuses on the optimization of the topology of 2D and 3D structures [16], aiming to
remove excess material from a predefined area or volume so that the boundary con-
ditions of the task are met. These conditions, in most cases, focus on maximizing
the stiffness of the structure while ensuring force equilibrium and keeping the max-
imum volume of the structure bellow predefined level [14]. A less widespread, but
for practical application much more attractive direction of optimization of building
structures, is moving towards the size optimization of the building elements, which
is mainly extended for beam structures [5]. The main difference compared to topol-
ogy optimization is the predefined geometry of the structure with unknown defining
dimensions of the cross-sections of individual beams. The optimization criterion is
then to minimize the weight of the structure while meeting the equilibrium of force
balance and other constraints related to deformations, stress, buckling capacity, and
others [13], [9]. In truss structures, deformations and stresses are solely determined
by the cross-sectional area, which means that size optimisation with stress constraints
results in the use of Sequential Linear Programming (SLP) [15]. However, in frame
structures, both the cross-sectional area and the moment of inertia influence deforma-
tions and stresses. This complexity turns the optimization of general cross-sectional
shapes into a nonlinear optimization problem, characterized by nonlinear inequality
constraints.

For solving size optimization tasks, two directions are currently extended, namely
solutions using gradient methods and evolutionary algorithms. Gradient methods such
as Sequential Quadratic Programming (SQP) [3] and the Method of Moving Asymp-
totes (MMA) [12] are based on replacing the original optimization task with a locally
approximated one of simpler formulation, whose solution approaches the optimum
of the original task. These approaches typically only lead to a local maximum or
minimum, which might not align with the overall best solution for the given prob-
lem. However, they offer the advantage of faster convergence by leveraging gradient
information. On the other hand, evolutionary algorithms like Differential Evolution
(DE) [1], or Particle Swarm Optimization (PSO) [6] are metaheuristic algorithms that
uses purely the information of the function values and are used for their ability to
find a global optimum. A significant limitation of these algorithms is their need for
numerous function evaluations. This problem is especially pronounced in structural
optimization tasks that employ the finite element method, as they require the compu-
tation of the deformation vector through the resolution of a system of linear equations.
The evaluation of the cost function is directly tied to the time-consuming process of
solving these equations. When combined with the high frequency of evaluations, this
significantly escalates the computational effort, thus limiting the method’s applica-
bility in practical scenarios. In this paper we focus on gradient method of Inexact
Restoration (IR) [8], which is particularly designed for engineering problems char-
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acterized by a multitude of inequality constraints, ensuring the solutions retain their
physical significance.

The paper is organized as follows: We begin with a brief review of the mathemat-
ical background; see Section 2 for the finite element method and Section 3 for the
size optimization problem. The main part of the paper, Section 4, introduces the In-
exact Restoration method for the size optimization problem. Section 5 presents the
considered benchmarks along with our numerical results. The concluding Section 6
summarizes the paper and outlines our future work.

2 Structure weight optimisation

The goal of structural optimization is to minimize the weight of the structure while
ensuring structural integrity and serviceability. A common approach is to use the
Finite Element Method (FEM) [2] to solve the discretized form of potential elastic
energy, leading to a minimization problem

min
r

1

2
rTKr− rT f

which is equivalent to the solution of a system of linear equations

Kr = f , (1)

where K ∈ Rnd×nd is a symmetric, positive definite stiffness matrix, f ∈ Rnd is the
load vector, r ∈ Rnd is the vector of deformations, and nd is the degree of freedom of
the structure. The stiffness matrix is composed of the contributions from the stiffness
matrices of individual elements

K =
ne∑
i=1

LT
i Ke,iLi,

with Li ∈ R6×nd being the allocation matrix that maps the entries of Ke,i to their
global positions in K, Ke,i is a local stiffness matrix of the element, and ne is the
number of elements. In this paper, we consider Ke,i ∈ R6×6 to be the elastic stiffness
matrix of a 2D Euler beam element

Ke,i =
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
,
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where Ei is Young’s modulus, li is the length of the element, Ai is the area of the
cross-section, and Iy,i is the moment of inertia of the cross-section, which may vary
for each element i ∈ {1, 2, . . . , ne}.

Given the nature of the Euler stiffness matrix, it is possible to decompose Ke,i into
a sum of two separate matrices corresponding to axial and bending stiffness, denoted
as stiffness KT ∈ R6×6 and KE ∈ R6×6, respectively

Ke,i = AiKT,i + Iy,iKE,i

KE,i =


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,

KT,i =
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
.

Notice that for fixed lengths of the elements li and Young’s modulus Ei, matrices
KT,i and KE,i are constant for each element, and the Ke,i depends purely on the
cross-sectional parameters Ai, Iy,i of each element. This property is especially useful
for size optimization and will be exploited in Section 4.

3 Size optimisation problem

Size optimization is a specific type of structural optimization in which the geometry
of the structure is fixed, but its individual parts are subject to optimization. In the
context of beam structures, size optimization involves optimizing the cross-sectional
dimensions of each beam element. The goal of the optimization is to find the mass
distribution that minimizes the weight of the structure while maintaining the service-
ability and ultimate limit states, such as maximal deformations, internal forces, and
stresses. Let us define a size optimization problem as the minimization of the struc-
ture’s weight:

m(a) =
ne∑
i=1

Ai(a)Liρi
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This is done while maintaining force equilibrium:

K(a)r = f

amin ≤ a
(2)

and ensuring the structure meets serviceability and ultimate limit states:

ĉ(r, a) ≤ 0

Thus, the optimization problem can be formulated as:

min
r,a

m(a)

s.t. K(a)r = f

ĉ(r, a) ≤ 0

amin ≤ a

(3)

The m(a) is a simple summation of the masses of each element, where ρi > 0 is
the material density of an element, and A(a)i > 0 is the cross-sectional area of an
element, dependent on the geometric parameters of the cross-section, a ∈ Rnp .

The expression (2) can be understood as an extension of equation (1), where the
stiffness matrix K(a) is now a function of the cross-sectional parameters

K(a) =
ne∑
i=1

LT
i Ke,i(a)Li,

Ke,i(a) = Ai(a)KT,i + Iy,i(a)KE,i.

These parameters are constrained by their minimum values, amin ∈ Rnp . This ensures
the physical validity of each geometrical parameter, such as preventing a rectangle
from having negative side lengths. From a mathematical perspective, these constraints
also ensure the positive definiteness of K(a). The number of parameters, np, depends
on the parametric equations which define the cross-sections of individual elements,
and this may vary from one element to another. For example, the number of geometric
parameters is only one for square and circular cross-sections, two for rectangular and
pipe cross-sections, and four to six for I-shaped cross-sections.

Lastly, ĉ(r, a) represents the set of inequality constraints that ensure the structure’s
serviceability and ultimate limit states, such as maximal deformations, strains, and
stresses. The number of inequality constraints depends on the applications and may
vary. In this paper, we consider deformation and stress constraints as

ĉ(r, a) =

[
r− rmax

Bσ(a)r− σmax

]
where rmax ∈ Rnd is the vector of limit deformations, Bσ(a) ∈ Rnσ×np is the matrix
mapping the deformations to element stresses dependent on geometrical parameters a,
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and σmax ∈ Rnσ is the vector of limit stresses. Here, nσ indicates the count of stress
constraints, leading to a total constraint count of nc = nd + nσ.

Since the stiffness matrix K(a) is positive definite, the deformation vector has a
unique solution

r(a) = K(a)−1f ,

which, when substituted back into the minimisation (3), we obtain a nonlinear optimi-
sation problem with nonlinear inequality constraints of purely geometric parameters

min
a

m(a)

s.t. a ∈ Ω

Ω = {a ∈ Rnp | c(a) ≤ 0, amin ≤ a}
with a set of inequality constraints

c(a) =

[
r(a)− rmax

Bσ(a)r(a)− σmax

]
.

4 Inexact restoration

An inexact restoration algorithm is designed to solve optimization problems charac-
terized by nonlinear cost functions and inequality constraints. The prerequisites for
applying this algorithm include the smoothness of the cost function and inequality
constraints, as well as the convexity and compactness of the feasible set of optimized
variables.

The algorithm operates through two alternating phases: restoration and minimiza-
tion. Initially, a starting point, denoted by ax, is selected. From there, the process
advances to the restoration phase.

4.1 Restoration

In the restoration step, the objective is to find a point ay that is more feasible than the
starting point ax in terms of constraint violations

h(ay) ≤ p · h(ax), (4)

where h(a) is a constraint violation function and p ∈ (0, 1) is an algorithm-specific
constant that ensures a reduction in constraint violations. To simplify the notation, let
us denote cj(a) as the j-th constraint of c(a) and the constraint violation function as

h(a) = |c+(a)|2

c+(a) =

max(c1(a), 0)
...

max(cnc(a), 0)


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where |.|2 denotes the Euclidean norm and max(cj(a), 0) acts as a filter that returns
only the violated constraints. It’s important to note that the required inequality is of the
form c(a) ≤ 0. Thus, function values below zero, which satisfy the constraints, are
mapped to zero, and only the positive function values, indicating constraint violations,
are considered.

To find ay, we compute the gradient of the constrain violation function h(a) and
perform a line search along the descent direction, transforming the inequality (4) into
one dimensional problem of finding the multiple of gradient α ∈ R such that

To find ay, we compute the gradient of the constraint violation function h(a) and
perform a line search along the descent direction, transforming the inequality (4) into
a one-dimensional problem of finding the multiple of the gradient α ∈ R such that

h(ax − α∇h(ax)) ≤ p · h(ax),

where ∇h(ax) is the gradient of violated constraints at ax. It turns out that one step
of the Newton method [10] in the direction of ∇h(ax) provides a sufficient decrease
in the constraint violation function with an explicit solution for α

α =
h(ax)

∇h(ax)
T∇h(ax)

and the new point ay

ay = ax − α∇h(ax), (5)

which not only eliminates the need to define the parameter p in inequality (4) but is
also computationally efficient since both h(ax) and ∇h(ax) are already known at this
stage. The only missing part is an evaluation of the gradient of violated constraints
[11]

∇h(a) = 1

h(a)
∇c(a)Tc+(a),

where ∇c(a) ∈ Rnc×np is a gradient of inequality constraints

∇c(a) =

[
∇r(a)

∇(Bσ(a)r(a))

]
composed of the gradient of the deformation vector ∇r(a) and the gradient of element
stresses ∇(Bσ(a)r(a)). It turns out that the gradient of the deformation vector r(a)
leads to a system of linear equations

∇r(a) = K(a)−1∇F(a)

∇F(a) =

[
∂K(a)

∂a1
r(a),

∂K(a)

∂a2
r(a), · · · , ∂K(a)

∂anp

r(a)

]
,

where
∂K(a)

∂ak
is the partial derivative of the stiffness matrix. Since the K(a) is posi-

tive definite, the deformation gradient ∇r(a) leads to the same system of linear equa-
tions as (1) with multiple right-hand sides. To compute the k-th partial derivatives of
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the stiffness matrix, where k ∈ {1, 2, . . . , np}, we derive from the sum relation of the
stiffness matrix K(a) and element stiffness matrix decomposition Ke,i(a). Since the
cross-section parameters in Ke,i(a) act as a scalar multipliers, we get

∂K(a)

∂ak
=

ne∑
i=1

LT
i

(
∂Ai(a)

∂ak
KT,i +

∂Iy,i(a)

∂ak
KE,i

)
Li,

which, with pre-computed KT,i,KE,i, depends on the derivation of the cross-section
area and moment of inertia that typically results in the derivation of a polynomial. In
the case of the gradient of element stress ∇(Bσ(a)r(a)), evaluation is slightly more
complex than the gradient of the deformation vector, but using simple chain rule we
are able to derive an explicit solution

∇(Bσ(a)r(a)) = ∇Bσ(a)r(a) +Bσ(a)∇r(a),

where ∇Bσ(a) is the gradient of the stress mapping matrix. Thus, while constraining
deformations, it is rather simple to add an additional stress constraint. With the gradi-
ent of the constraint violation function, we are then able to find the point ay using (5)
and proceed to the minimisation step.

4.2 Minimisation step

With the new ay, we compute the modified linearly approximated feasible set of in-
equality constraints by evaluating the constraints c(a) at ay while keeping the gradi-
ent of constraints ∇c(a) from the minimization step, which was evaluated at ax. The
modified linearly approximated feasible set of inequality constraints is then given by

π =
{
a ∈ Rnp | cj(ay) +∇cj(ax)(a− ay) ≤ c+j (ay)

}
.

This simple modification removes the requirement for the second evaluation of con-
straint gradients, the most expensive part of the algorithm to only one in each outer
loop iteration. Next we define a trust region with radius δ > 0

T = {a ∈ Rnp | ∥a− ay∥2 ≤ δ} .

In the intersection of these two sets, we minimize objective function m(a), i.e

min
a

m(a)

s.t. a ∈ π ∩ T.
(6)

To minimize (6), we compute a projected gradient of m(a) onto the approximated
feasible set

d = P (ay − η∇m(ay))− ay,
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where ∇m(ay) is the gradient of m(a), η ∈ (0, 1] is a scaling parameter, and P is the
projection onto π ∩ T, given as an solution of optimization problem

P (ay − η∇m(ay)) = argmin
a

∥a− (ay − η∇m(ay))∥2,

s.t. a ∈ π ∩ T.
(7)

The problem of projecting onto an arbitrary set can be interpreted as finding the
closest point in the set to the projected point. Conveniently, the minimization (7)
leads to quadratic programming with linear inequality constraints, which can be very
efficiently solved using the active set method approach [4].

With the projected descent direction of m(a), we perform a backtracking line
search to find β satisfying the Armijo rule

m(ay + βd) ≤ m(ax) + c1β(∆m(ay)
Td) (8)

where β ∈ (0,min(
δ

|d|2
, 1)] is a scalar multiplier of the gradient and c1 = 0.1 is the

Armijo rule constant. The new point az is then evaluated as

az = ay+βd.

4.3 Acceptance and rejection

Since the minimization of (6) deals only with the linearly approximated feasible set
π ∩ T, the new point az might not necessarily belong to the feasible set Ω. Thus, in
addition to the Armijo rule, we define a merit function that simultaneously assesses
both the decrease in the objective function and the constraint violations.

The proposed merit function ψ(a, θ) is a convex combination of the objective func-
tion and the constraint violation function

ψ(a, θ) = θm(a) + (1− θ)h(a),

where θ ∈ (0, 1] is the penalty parameter satisfying

Pred(θ) ≥
1

2
(h(ax)− h(ay)) (9)

and Pred(θ) is the predicted decrease of the merit function

Pred(θ) = θ(m(ax)−m(az)) + (1− θ)(h(ax)− h(ay)).

Since the Pred is linear in θ, by rewriting inequality (9) as an equation, we can derive
an explicit solution for θ as

θ =

{
max(θeq, θ) ifgθ ≥ 0
max(0, θeq) otherwise
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where gθ represents the derivative of Pred(θ), and θeq is the penalty parameter value
that satisfies the inequality (9) as an equality

gθ = (m(ax)−m(az))− (h(ax)− h(ay)),

θeq = −1

2

(
m(ax)−m(az)

h(ax)− h(ay)
− 1

)−1

.

With the updated penalty parameter θ, we can then evaluate the reduction in the
merit function between ax and az

Ared = θ(m(ax)−m(az)) + (1− θ)(h(ax)− h(az)),

and compare it with the predicted decrease Pred

Ared ≥ 0.1Pred. (10)

If the inequality (10) holds, we set az as the new ax and return to the restoration step
(5). Otherwise, we reduce the trust region δ and return to (8).

5 Numerical benchmark

For the numerical benchmark, we consider a cantilever beam with square cross section
of length l = 10m with fixed support on one end and fz = 10kN vertical force on
the other, see Figure 1. The beam is made out of steel with material density ρ =
7850kg/m3 and Young modulus E = 210GPa. For the constrains, we consider only
maximal stress for each element equal to yield strength fy = 235MPa. The presented
benchmark has an analytical solution for optimal geometrical parameter at given point
and the the minimal weight of beam as

a(x) =

(
6fzx

fy

) 1
3

mopt = 1.981ρL

(
fzL

fy

) 2
3

Figure 1: Numerical benchmark: Cantilever beam
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The beam is segmented into ne elements, each connected by ne+1 nodes, resulting
in 3(ne+1) degrees of freedom. For a series of element counts ne ∈ {2, 4, 8, 16, 32, 64, 128},
we generate 400 random initial configurations within the range ax ∈ [0.01, 0.2]. The
algorithm is executed for each configuration, and the outcomes are averaged for every
set of divisions.

50 100 150
800

900

1,000

1,100

1,200

Number of elements

W
ei

gh
t[
k
g

]

Numerical result
Discretized solution
Continuous solution

Figure 2: Objective function (weight) dependent on the number of elements
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Ti
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e
[s
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Figure 3: Execution time per run of the algorithm dependent on the number of ele-
ments

Figure 2 illustrates a comparison between the results obtained from the Inexact
Restoration algorithm (depicted in blue), the optimal weight derived from the dis-
cretized problem (shown in red), and the analytical solution for a beam with a contin-
uously distributed mass (represented in green). The numerical results align precisely
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with those of the discretized solution and demonstrate an asymptotic approach towards
the analytical solution as the number of elements increases. Additionally, Figure 3
presents the execution time for a single run of the algorithm, measured in seconds,
which exhibits an cubically increase with the rising number of elements. This trend
is primarily attributed to the computation involved in the gradient of deformations
∇r(a), which has a numerical complexity of O(n3

d). In the context of this straightfor-
ward benchmark, it’s possible to express the degrees of freedom as a function of the
number of elements, leading to a complexity of O(n3

e). Consequently, the computa-
tional time required for each algorithm run escalates cubically with an increase in the
number of elements.

Figure 4: Optimised shape of the benchmark cantilever beam for 2 (top left), 8 (top
right), 32 (bottom left) and 128 (bottom right) elements

6 Conclusion and future work

In the paper, we have presented the results of our implementation of the inexact
restoration algorithm for solving the constrained weight optimisation problem for a
2D elastic frame structure discretized by FEM with deformation and stress constraints.
The results from our benchmark, as seen in Fig. 2, show an exact match with the ana-
lytical discretized solution as well as asymptotic convergence to the analytical solution
for the beam with continuously distributed mass. The clock time for the algorithms, as
illustrated in Fig. 3, shows cubical growth with the number of elements, but remains
within a practically acceptable range of 0.7 seconds for 128 elements.

In our future work, we will extend the presented approach to include a variety of
cross sections and multiple load cases, which are essential for the practical use of the
algorithms. Additionally, in practical applications, it would be highly inefficient to
assign each beam a different cross section. Thus, adding modularity to the system
would not only decrease the complexity of the system but also bring the algorithms
one step closer to practical application.
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