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Abstract

The Discrete Element Method (DEM) is a numerical technique used to analyze the
motion of discrete particles. DEM is mostly used to analyze the behavior of granular
materials such as sand, gravel, powders, etc. The method can also be combined with
the Beam Bound Model (BBM), which allow the method to be used for continual
problems simulation. However, method is overshadowed in this field by the Finite
Element Method. Its primary application is found in problems requiring consideration
of both continuum and discrete properties, such as crack propagation, especially in the
case of dynamic behaviour. The problem with DEM is its high computational cost,
but by using properties specific to the crack propagation problem, efficient methods
for solving differential equations can be used. This paper focuses on the efficiency
of using the implicit Newmark-beta method to analyze crack propagation in concrete
members.
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1 Introduction

The discrete element method is a numerical method based on the motion and contacts
of particles firstly described by P.A. Cundall in his papers [1, 2]. Since then, there
have been significant advances in the development of the method and its extension
into many areas. One of the core extensions was the introduction of bonded elements
and the creation of the bound particle model (BPM), which is described in [3]. This
model allows for the analysis of continuum problems, but involves stiffnesses that
are difficult to capture, especially in cases of mutual particle rotation. One way to
approach this problem is to use a BBM that inserts imaginary beam elements between
the elements to provide force transfers. These models are described in papers [4, 5].

The base of the discrete element method is the solution of systems of differential
equations. These are commonly solved using an integration scheme based on the
explicit Euler method described in [6]. However, this method requires very short
time steps for stability, the length of which depends on the mass to stiffness ratio. In
the case of very stiff materials such as concrete or steel, the method becomes very
computationally time expensive.

For this reason, the use of more effective solution methods is needed. An overview
of the different numerical methods suitable for DEM and their effectiveness is dis-
cussed in [7]. These methods are mostly used in explicit variants, since the frequent
contact changes in DEM make it infeasible to use long time steps for efficient use of
implicit methods. In the context of crack propagation problems, especially in building
structures, it is advantageous to use implicit methods due to the infrequent occurrence
of contact changes. For this reason, we adopted the Newmark-beta method, initially
proposed in [8], due to its stability proofs independent of the time step length in the
case of the implicit expression.

2 Theoretical background of DEM-BBM

The base of the DEM is a system of second order differential equations of motion of
the form,

Mü(t) +Cu̇(t) +Ku(t) = f e(t) for t ≥ 0, (1)

where M represent mass matrix, C is damping matrix and K is stiffness matrix. f e

represents external forces that can be varied over time t and u stand for displace-
ment vector as a function of t, its first derivative represents velocity, while the second
derivative represents acceleration.

The system of differential equations is defined by initial conditions on velocity and
acceleration and also boundary conditions as,

ü(0) = a0 and u̇(0) = v0, (2)

Bu(t) = o, (3)
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where a0 stand for initial acceleration vector and v0 for initial velocity vector. Matrix
B is boundary constrains representing support of member.

2.1 Damping, stiffness and mass matrix

The matrices denoted as K and C, are global matrices assembled for a system in
which K,C ∈ Rnd,nd where nd is the number of degrees of freedom. These matrices
are constructed by assembling sub-matrices corresponding to individual contacts. The
contacts are categorized into bound and unbound contacts. The global system matrices
are then obtained as follows,

K = LbTbKdbT
T
b L

T
b + LuTuKduT

T
uL

T
u (4)

where index b correspond to matrices for bounded contacts and u for unbounded con-
tacts. L ∈ Rnd,6nc , where nc represent amount of contacts, are allocation matrix which
maps diagonal stiffness matrix Kd ∈ R6nc,6nc to its corresponding degree of freedom.
T ∈ R6nc,6nc are block diagonal transformation matrix for each contact from local to
global coordinate system. Global matrix C is generated in the identically.

As mentioned, the creation of local contact matrices are divided for bound and un-
bound contacts. In the basic form of the DEM, only unbound contacts occur, most
often defined according to the Hertz’s equations. Examples of different contact mod-
els can be found in [9]. However, in our case, models that keep the compressive
strength for bound and unbound contacts identical are used to match the behavior. The
shear stiffness is then introduced under the assumption of behavior corresponding to
granular materials based on experiments. The damping forces are calculated based
on the harmonic oscillator equations. The resulting local single contact matrices are
expressed as

Ku =



AE
l

0 0 −AE
l

0 0
0 kt0 0 0 −kt0 0
0 0 0 0 0 0

−AE
l

0 0 AE
l

0 0
0 −kt0 0 0 kt0 0
0 0 0 0 0 0

+ kt(u)


0 0 0 0 0 0
0 1 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 1 0
0 0 0 0 0 0

 , (5)

Cu = 2ξu



√
AE
l
mr 0 0 0 0 0

0
√
kt0mr 0 0 0 0

0 0 0 0 0 0

0 0 0
√

AE
l
mr 0 0

0 0 0 0
√
kt0mr 0

0 0 0 0 0 0


, (6)

where A stand for area of contact, l is length between centre of elements, and E stand
for Young’s modulus, that correspond to the model for bounded elements. Stiffness
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kt0 and kt(u) are the stiffnesses to be obtained from experimental friction tests such
as [10]. mr is reduced mass of elements in collision, and ξ is damping ratio coefficient.
The stiffness matrix for bonded contacts is based on Timoshenko’s beam theory, and
its derivation can be found, for example, in [11]. The construction of the damping
matrix follows the same approach as for unbound contacts. Resulting matrix form for
single contact are,

Kb =



AE
l

0 0 −AE
l

0 0
0 12EI

l3(1+ϕ)
6EI

l2(1+ϕ)
0 − 12EI

l3(1+ϕ)
6EI

l2(1+ϕ)

0 6EI
l2(1+ϕ)

(4+ϕ)EI
l(1+ϕ)

0 − 6EI
l2(1+ϕ)

(2−ϕ)EI
l(1+ϕ)

−AE
l

0 0 AE
l

0 0
0 − 12EI

l3(1+ϕ)
− 6EI

l2(1+ϕ)
0 12EI

l3(1+ϕ)
− 6EI

l2(1+ϕ)

0 6EI
l2(1+ϕ)

(2−ϕ)EI
l(1+ϕ)

0 − 6EI
l2(1+ϕ)

(4+ϕ)EI
l(1+ϕ)


, (7)

Cb = 2ξb



√
kb1,1mr 0 0 0 0 0

0
√

kb2,2mr 0 0 0 0

0 0
√

kb3,3Jr 0 0 0

0 0 0
√

kb4,4mr 0 0

0 0 0 0
√
kb5,5mr 0

0 0 0 0 0
√
kb6,6Jr

 ,

(8)
where I is moment of inertia according to cross-section geometry, while J is moment
of inertia according to discrete element shape and mass. ϕ stands for sheer coefficient
for Timoshenko’s beam theory. The cross section of contact is evaluated with depen-
dence of coefficient λ, whose description, influence on the calculation and appropriate
values are discussed in the article [12].

The mass matrix M ∈ Rnd,nd is compiled for the system independently of the
contacts. We consider a diagonal mass matrix, where we assign to each respective
degree of freedom the mass of a discrete element, respectively its moment of inertia
as follows,

M =



m1

m1

J1
. . .

mn

mn

Jn


. (9)

2.2 Crack initiation criteria

Cracks can form in bounded contacts. At each calculated time step, the exceeding of
the maximum stress is verified. If the maximum stress condition is exceeded, a crack
occurs and the initial contact stiffness matrix is removed from the global matrix of
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the system. The internal forces in local coordinates f intLb on each element is calculated
based on the displacement as follows,

f intLb = KdbT
T
b L

T
b u(t), (10)

Based on the internal forces, we can calculate the normal and shear stresses in the
individual beam members. Since we do not consider any forces acting along the length
of the elements, the maximum stress for each member will be as follows,

σb =

 1
A

0 1
Wy

1
A

0 −1
Wy

0 3
2A

0

 f intL , (11)

where Wy is section modulus for corresponding cross section. In (11) we can create
a block diagonal matrix from the partial matrices and calculate all stresses for all
members simultaneously.

3 Application of Newmark-beta method

Newmark-beta methods is a numerical method for solving differential equations of the
form,

Mü(t) +Cu̇(t) + f int(t)u(t) = f e(t) (12)

Newmark developed and proved the use of the extended mean value theorem and its
application to the dynamics of structures. The resulting discretized equations are,

u̇n+1 − γ∆tün+1 = u̇n + (1− γ)∆tün (13)

un+1 − β∆t2ün+1 = un +∆tu̇n +
∆t2

2
(1− 2β)ün (14)

Mün+1 +Cu̇n+1 + f intn+1 = f en+1 (15)

where ∆t is time step size. Coefficients γ and β which effect numerical stability and
energy dissipation. The coefficients are limited by

0 ≤ γ ≤ 1, 0 ≤ 2β ≤ 1 (16)

The most commonly used combinations are γ = 0.5, β = 0 which yields the Explicit
central difference scheme. In the case of introducing γ = 0.5, β = 0.25 we get
implicit average constant acceleration.

For our problem we cannot apply the following equation

Ku(t) = f int(t), (17)

since
Kuu(t) = f intu (t), (18)
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term is not valid for the total displacements of the elements, but only for the relative
displacements at the time of contact. For this reason, we introduce the equations,

un+1 = un +∆un, (19)

f intn+1 = f intn +K∆un. (20)

Another problem is the relation of the stiffness matrix K to the displacements u as
can be seen in (5). In this case, an explicit expression using the central step value of
Taylor expansion as,

kt(u)n,n+1 = kt(un +
∆tu̇n

2
+

∆t2ün

4
). (21)

By substituting (19)–(20) into (13)–(16) we obtain a system of linear equations as, I 0 −β∆t2I
0 I −γ∆tI
K C M

∆un

u̇n+1

ün+1

 =

∆tu̇n +
∆t2

2
(1− 2β)ün

u̇n + (1− γ)∆tün

f en+1 − f intn

 =

an

bn

fn

 , (22)

where the last vector containing an, bn and fn serves as a substitution of the right-hand
side vector for subsequent adjustments. We also obtain the modified condition from
(3) as follows,

B∆un = o. (23)

From (22) we can express the relation of the displacement and velocity dependence
on acceleration as

∆un = an + β∆t2ün+1, (24)

u̇n+1 = bn + γ∆tün+1, (25)

by substituting these relations into the last equation of the system we obtain the equa-
tion for the acceleration as

(Kβ∆t2 +Cγ∆t+M)ün+1 = fn −Kan −Cbn, (26)

then we derive by time the original constraints (23) into a form

Bün+1 = o, (27)

where term Kβ∆t2 + Cγ∆t + M yields a positive definite matrix for which more
efficient algorithms can be used than for direct solution of (22).

4 Determination of time step

Determining the appropriate ∆t value is an important part of using numerical methods
to solve time-dependent differential equations. As already mentioned in the case of
implicit solution, Newmark’s method achieves a stable solution regardless of the step
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length. In our use case, however, we must also take into account the fact that the matrix
K itself is time dependent, mostly based on breaking bound contacts and occurrences
of unbound contacts.

To estimate the initial step length, we use the maximum step size according to the
explicit method. This is defined based on the lowest natural frequency of the system,
which however leads to the eigenvalue problem. Here, however, we can help ourselves
by simplifying by considering only the diagonal matrices of both stiffness and mass.
From these assumptions we can find that the maximum time step can be defined as

∆tcrit = min 2

√
mi,i

ki,i
. (28)

In the case of explicit methods, it is recommended to use a value about 20% of the
critical time, this problematic of the time step for the explicit method is discussed
in [13].

In the case of an implicit solution, the maximum time step cannot be precisely
determined. For this reason, we consider η times the critical time step according to
the explicit method.

In the case that a violation occurs according to the condition set in (11), an evalua-
tion of exceeding this condition occurs. If the violation exceeds the specified ϵ limit,
the line search method is used in the form,

∆ulimit = α∆un, where 0 < α < 1. (29)

The last calculated step is then recalculated with a new time step length defined as

∆tn =
√
α∆t. (30)

The same modification of the time step is introduced for cases when the unbound
contact is disconnected.

5 Numerical benchmark

The benchmark is a simply supported beam with length of 3 m and a cross-section
of 1 × 0.5 meters as a horizontal rectangle. The calculations are performed using a
material characterized by a Young’s modulus E = 30 GPa and a Poisson’s ratio v =
0.25. The beam is loaded with a uniform load of 230 kN/m. see Fig. 1. The strength
of each contact is determined using a random distribution with a mean value of σlim =
6 MPa and a standard deviation of σσlim

= 0.05 MPa see Fig. 2. The benchmark
examines the computation time of implicit and explicit methods, limiting step lengths
and time for one step calculation.

The calculation was performed using both implicit and explicit Newmark-Beta
methods with the coefficients presented in Section 3. The calculation was terminated
after time t=0.5s, which was set as the fracture is already completely developed see
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Fig. 3. The step length for the explicit solution is set to about the recommended 20%
of the critical time according to (28). In the case of the implicit solution, the time step
is set as 1% of the total time.

Figure 1: Static scheme

Figure 2: Normal distribution of tensile strength

Figure 3: Crack propagation solution

The mean values of the times over several computational cycles were used to re-
duce errors. The computational time of one step is measured in two scenarios. Before
crack formation tb and after crack formation tu. The calculation after crack formation
becomes more expensive due to the assembly of a pair of stiffness and damping ma-
trices, as well as the actual search for new contacts. The results are shown in Tab. 1
and Tab. 2 and for graphic representation of the relation between computation time
and the number of elements see Fig. 4.

8



Explicit
Element size / Total elements

0.05 / 336 0.025 / 1271 0.01 / 7676
∆tcrit 1.41 · 10−5 7.05 · 10−6 2.82 · 10−6

∆t 3.00 · 10−6 1.50 · 10−6 5.00 · 10−7

tb,1 5.27 · 10−5 1.70 · 10−3 1.22 · 10−2

tu,1 8.86 · 10−5 3.10 · 10−3 2.22 · 10−2∗

ttot 11.85 82.22 1722.35∗

Table 1: Calculation time for explicit method [s]
*stands for estimated time

Implicit
Element size / Total elements

0.025 / 1271 0.01 / 7676 0.005 / 20351
∆t 5.00 · 10−3

tb,1 0.067 0.158 0.82
tu,1 0.094 0.237 1.39
ttot 8.04 19.75 110.70

Table 2: Calculation time for implicit method [s]

0.1 0.5 1 1.5 2 2.2

·104

101

102

103

nelements

t t
o
t

Implicit
Explicit

Figure 4: Dependence of computation time on the number of elements

6 Concluding remarks

In the framework of the paper, the validation of the suitability of using Newmark-
beta methods for the DEM-BBM problem was performed. This variant of the DEM
combined with the crack propagation problem provides suitable conditions for the use
of implicit methods mainly by infrequent contact changes. Explicit methods that do
not require solving systems of equations and within one step are orders of magnitude
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faster, but due to the physical properties of the problem to be solved, the required time
steps are significantly smaller, making the total solution much more time expensive.
The computational time increases quadratically in cases of mesh refinements, which
is due to the simultaneous increase in the difficulty of the problem as well as the re-
quirement to decrease the time step. The implicit solution, despite its stability, allows
the use of considerably larger steps. However, even here it is necessary to introduce
some restrictions on the step length. One possibility, which is also introduced here, is
to actively check during the calculation whether there is a significant violation of the
contact conditions; such errors would subsequently insert additional energy into the
system. This step adjustment can greatly increase the accuracy of the analysis, but in
the case of dynamic loading it does not ensure that bond breaking does not occur at
the extremes between calculated time steps that satisfy the conditions. A large time
step can also lead to the need for frequent reduction, which can increase the overall
time as a result. Thus, one possibility to which to relate the time step conditions is,
for example, to the difference of velocity or acceleration.
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