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Abstract 

This paper presents a novel remeshing procedure for limit analysis with a more gen-

eral mesh configuration. The element with high dissipation in each analysis step will 

be refined through three schemes. A benchmark study of the strip footing problem is 

first carried out to compare the effect of these three refinements, through which the 

best refinement approach is concluded. Then, in the collapse analysis of Prestwood 

Bridge, this best refinement is employed to remesh the elements in the backfill region 

to test the robustness of the remeshing procedure in the practical scenario. The results 

show that the proposed remeshing procedure for the limit analysis can effectively re-

duce the mesh dependence of the prediction. The load prediction significantly de-

creases after iterative refinements in the two considered case studies. According to the 

benchmark study of strip footing, the edge-split approach has a prominently good per-

formance among the three considered refinement, giving a precise final prediction 

with only 8 – 15% computational budget of the other two methods. The performance 

of this approach is also fair when applied to analyzing Prestwood Bridge while the 

explosion of the time consumption probably appears in the later iterations. 

Keywords: limit analysis, remeshing, mesh dependence, strip footing, masonry arch 

bridges, collapse performance. 

1  Introduction 

Finite element limit analysis is one of the promising numerical approaches to investi-

gate the progressive failure of the continuum. This approach is developed based on 
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the theoretical framework of limit analysis but absorbs the idea of domain and field 

discretization from the classic finite element method. Strong discontinuities, such as 

cracks and sliding, are convenient to take into account in this approach. If the associ-

ated flow rule is adopted, the problem can be stated as Linear Programming (LP), 

solved in a single step rather than the iterative non-linear finite element analysis pro-

cedure. Such analysis has been widely implemented for understanding the collapse of 

many geomechanics problems [1-6] as well as modeling the failure of the soil-like 

material in structural analyses [7-10], being proven to have great accuracy and effi-

ciency. 

 

Given the usage of discretization, the mesh dependence of the results should be a 

great concern. However, this aspect is normally excluded in most of the literature. 

Automatic remeshing procedure is a very suitable approach to reduce the mesh de-

pendence of the results. This approach has been widely used in finite element analysis 

[11-12] and is also convenient to be migrated for limit analysis. Unfortunately, current 

mesh refinement procedures for the limit analysis usually have difficulties applying 

to a more general scenario. In some contributions, the proposed refinement schemes 

are only compatible with the regular mesh [13-14]. Regarding some adaptive ap-

proaches, cautious assignment of the refinement scheme to different domains accord-

ing to the property of the prior-known analytical solution is required to get a more 

precise prediction [15-16]. Therefore, a more general and automatic remeshing pro-

cedure for limit analysis is necessary to be put forward. 

 

This paper will develop a fully automatic remeshing procedure for the limit analy-

sis, applicable for more random unstructured triangular mesh. The remeshing will be 

iteratively conducted until reaching the convergence criterion. In each step of this 

procedure, the triangles with high dissipation will be selected and then refined through 

three different schemes. We first apply this procedure to analyze the collapse of the 

strip footing problem as a benchmark to investigate the effect of different refinement 

schemes. Then, the collapse of Prestwood Bridge with full consideration of the back-

fill is investigated. We implement this remeshing procedure to refine the element in 

the backfill region. 

2  Methods 

2.1 Deformable triangular elements with constant strain 

We first briefly review the theoretical construction of the deformable triangular ele-

ment with a constant strain field, proposed by Sloan and Kleeman in 1995 [4]. The 

governing formulation of the element is stated from a kinematic view based on the 

Upper Bound (UB) theorem. 

According to the elasticity theory, the velocity field of the continuum with constant 

strain can be represented by Eq. (1), where the first part accounts for the rigid body 

motion and the second one indicates the homogenous deformation mode. Note that 

here in each mapping, the origin of the coordinate is set at the centroid of the element. 



3 

 

 
Figure 1: Joint j with two adjacent triangular elements a and b: calculation of veloc-

ity discontinuities. 
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After clarifying the element velocity field, the velocity discontinuities qj at each 

joint are thus computable. Consider two adjacent triangular elements a and b with a 

shared joint j (Figure 1), we subtract velocities at the corresponding vertices in ele-

ments a and b and then project such subtraction onto the local frame of the joint (Eq. 

(2)). A relation between the element unknowns and interfacial velocity jumps can be 

obtained (Eq. (2)), known as the compatibility condition of limit analysis. Assembling 

this condition over all the joints, we can write this compatibility constraint in a global 

matrix form (Eq. (4)). 
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The flow rule for the strain variables is associated with Mohr-Coulomb criterion 

for the continuum [17]. Given the nonlinearity of the standard Mohr-Coulomb relation 

(see Eq. (5) and Figure 2a), we follow the solution proposed by Bottero et al. [18] to 
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implement a linearization (Figure 2b). We use p planes to approximate the real yield 

relation. The equation of the kth plane is given in Eq. (6), where coefficients Ak, Bk, 

and Ck are given in Eq. (7). 
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(a) 

 

(b) 

 
Figure 2: Limit surface of 2D Mohr-Coulomb friction model: (a) original limit sur-

face; (b) linearizing approximation of the limit surface. 
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After the linearization of constitutive relation, the associated flow rule can also be 

written as a linear constraint (Eq. (8)), where the plastic strain components for each 

element are linked with p non-negative plastic multipliers. 
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Now we have all the essential elements for the UB limit analysis, and the optimi-

zation formulation for this problem can be stated as Eq. (9). In the objective function, 

we account for the potential power of the system as well as the dissipation caused at 

the interfaces and in the elements. The constraint list includes the compatibility con-

dition (4) and flow rule for the elements (8). The interfacial flow rule is associated 

with the widely acknowledged Mohr-Coulomb friction model [19] (third constraint in 

the list of Eq. (9)). We also have to supplement a positive work condition to ensure 

the positive dissipation of the external work [20] (first constraint in Eq. (9)). 
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2.1 Automatic remeshing procedure 

In this subsection, we proceed to construct a proper scheme for the iterative re-mesh-

ing procedure based on the above limit analysis formulation (Eq. (9)). As mentioned 

in the introduction, since the mesh arrangement usually has a considerable influence 

on the limit analysis prediction, developing a robust remeshing algorithm is necessary 

to get a result that is less dependent on the mesh.  

An automatic remeshing procedure is usually iterative with several analysis steps. 

In each iteration, we decide on elements that need to be remeshed and then implement 

the specific refinement schemes to reduce their size. The elements that need to be 

remeshed are determined according to an energy-based criterion. A dissipation-based 

indicator γde is assigned for each element, being defined as the proportion of dissipa-

tion of this element and the maximum dissipation over all the elements (Eq. (10)). 

Therefore, after getting the solution of iteration k – 1, we compute γde for each element, 

and the element whose dissipation index exceeds the threshold γ will be selected as a 

candidate for further remeshing. Here, as we could expect, the setting of threshold γ 

is very critical. A smaller choice of γ will lead to more elements being remeshed in 

one step, and the time consumption of the procedure may become unacceptable. On 

the contrary, a large threshold may give rise to a low convergence speed. 
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(a) Centroid refinement (b) Mid-point refinement (c) Edge-split method 

Figure 3: Refinement scheme for triangle elements. 

Regarding the refinement, we propose three different schemes for each selected 

element candidate. In the centroid scheme (Figure 3a), we added an extra node at the 

centroid of the triangle, and the origin element is divided into three. The mid-point 

refinement and the edge-split method are inspired by the remeshing scheme proposed 

in [14] for the structured mesh. In the mid-point refinement (Figure 3b), mid-point 

nodes are added to three edges of the triangle to generate four sub-triangles. Note that 

after such refinement, all these sub-triangles are similar to the original element, and 

the direction of the new interfaces always remains parallel to the original one. The 

edge-split refinement is the most simple and direct approach (Figure 3c), where the 

triangle is split along the linkage of the mid-point of the longest edge and the opposite 

vertex. In this scheme, the increase of the element amount is the fewest. Associated 

the refinement scheme with the previous element selection approach, the whole itera-

tive remeshing scheme is clear now (see Algorithm 1). In the below analysis, we will 
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first present a benchmark example to compare the effectiveness of this procedure with 

the appliance of these three schemes. 

 Iterative remeshing scheme 

1. Solve (9) and Get initial solution u[0], p[0], λ[0], α0; 

2. Initial setting: e = 1, tol=0.001, k = 0; 

3. WHILE e > tol 

4. k = k + 1; 

5. Calculate dissipation-based indicator γde for each element 

6. Find the element where the dissipation exceeds the threshold 

 ( ) re de,[ -1]:i k iE E E =    

7. Refine element set Ere through refinement scheme C/M/E and get the new 

model 

8. Solve (9) and get the results u[k], p[k], λ[k], α[k] for the new model 

9. Calculate error of the load multiplier e = |α[k] – α[k–1]|/α[k–1] 

10. END 

3  Results 

In this section, we will present two case studies with the implementation of the pro-

posed automatic remeshing procedure. We first investigate a classic benchmark of 

geomechanics, the strip footing problem, to compare the performance of different re-

finement schemes. Then, the approach will be applied to the collapse analysis of Prest-

wood Bridge, which is a more practical and large-scale scenario. 

3.1 Benchmark example: strip footing problem 

To test the effectiveness of different refinement schemes for triangles, we first apply 

the proposed remeshing procedure to the strip footing problem. The case considered 

here is the collapse of weightless cohesive-frictional soil. The geometry, load and 

boundary conditions refer to the simulation carried out by Sloan and Kleeman [4] 

(Figure 4a). The unit length B for the geometry is equal to 1000 mm and the depth of 

the soil is also 1000 mm. The effective cohesion c and friction angle φ are 1 MPa and 

30°, respectively, and the linearization precision p for the Mohr-Coulomb relation is 

set as 24. We start from the same unstructured triangular mesh (generated by a 

MATLAB-based code package “MESH2D” [21], Figure 4b) and implement the pro-

posed remeshing procedure with the three refinement schemes proposed above, 

through which the accuracy and efficiency of these three procedures can be compared. 

The threshold factor γ for the element selection criterion is set as 0.6. For the standard 

procedure, the iteration will stop only when the error of the collapse load is reduced 

to the tolerance. However, it could be quite time-consuming for some of the consid-

ered refinement cases. Given the comparative purpose of this benchmark study, for 

each case, the procedure will stop at the 10th iteration whether the convergence crite-

rion is reached or not, to control the computational budget at an acceptable level. 
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(a) 

 

(b) 

 

Figure 4: Modeling of strip footing problem [4]: (a) geometry, load and boundary 

conditions; (b) Initial mesh for the remeshing procedure. 

Figure 5 gives the convergence curves of these 10 iterations for different refine-

ment schemes. We can see the proposed procedure is quite effective as the collapse 

load is continuously reduced due to the iterative refinement, whatever triangular re-

finements are employed. Nevertheless, the convergence speed and the efficiency of 

those refinement iterations are different. Note that for this benchmark problem, the 

analytical solution is available, which is 30.14MPa [4]. We also indicate this bench-

mark value through a red line in Figure 5. 

 

Figure 5: Convergence of the ultimate pressure and growth of the computational 

time during the remeshing procedure for the strip footing problem: comparison of 

different triangular refinements. 

In fact, the convergence speed of the centroid refinement (Figure 5) is not as rapid 

as our expectation. Although the collapse load has dropped during the iteration, the 

final prediction is still quite discrepant from the analytical solution (about 23.2%). 

This could be attributed to the inefficiency of this refinement scheme itself. As we can 
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expect, continuous cracking paths are hard to form when iteratively applying this 

scheme. In the final step of the remeshing, we can note that all the generated cracks 

are radial from the nodes but not linked with each other to configure a successive path 

(Figure 6b). In contrast, the performance of the mid-point refinement is very accepta-

ble since all the generated interfaces between the elements are parallel to the original 

edges. The new cracking configuration excellently inherits from the continuity of the 

initial mesh (Figure 6c). However, note that the elements near the primary cracks are 

repeated to be split into a very small size in the later iterations. This gives rise to an 

explosion of the element amount and further a high time consumption of the analysis: 

in the final iteration, the time cost for the mid-point refinement can reach twice that 

of the centroid refinement (see Figure 5). The edge-split method presents the highest 

computational efficiency, as the new elements generated from this scheme are the 

fewest (see Figure 5). Moreover, the direction of the interfaces generated by this 

scheme is much more diverse, while the continuous configuration of those interfaces 

fairly remains after several iterations. This increases the possibility of the occurrence 

of different crack patterns. As a result, the final load prediction is also the most con-

servative among all the three approaches (deviations within 7%).  

  
(a) Initial solution (b) Final step, centroid refinement  

  
(c) Final step, mid-point refinement (d) Final step, edge-split method 

Figure 6: Collapse of the strip footing problem with the appliance of remeshing pro-

cedure: comparison of different refinement schemes, element dissipation. 

Table 1 collects the predicted results and the computational cost for the remeshing 

procedure with all three refinement schemes. We see convergence speed for the mid-

point refinement and edge-split approaches are prominent. The drop of the load pre-

diction after 10 refinement iterations can reach 25%. These two approaches also give 

a more accurate estimation of the collapse load in the final step. The deviation from 
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the precise analytical solution is 6.6 – 8.7%. As we mentioned above, the edge-split 

scheme also presents remarkable efficiency. The element amount used in the final step 

is the fewest and the computational consumption is 8 – 15% of the other two refine-

ment schemes. Therefore, according to this benchmark study, we can conclude that 

the edge-split method is the best refinement scheme for the remeshing procedure. In 

the below analysis for a more large-scale problem, only the edge-split method will be 

adopted for the remeshing procedure.  

Re-mesh scheme 
qf,[1] 

[MPa] 

qf,[end] 

[MPa] 

Drop of 

load (%) 

Computational 

time t (s) 

Analytical so-

lution [MPa] 

Centroid refinement 

43.9 

37.126 15.431 52.913 

30.14 Mid-point refinement 32.796 25.294 102.734 

Edge-split method 32.135 26.800 7.661 

Table 1: Summary of the results and computational cost for the three refinement 

schemes. 

3.2 Collapse of Prestwood Bridge 

After concluding the most efficient refinement approach, we now apply this remesh-

ing procedure to a more practical scenario, the collapse analysis of a real bridge with 

full consideration of the backfill. This bridge is also a very classical benchmark since 

it has been studied by many previous researchers. 

 

Figure 7: Geometry of Prestwood Bridge [9-10]. 

The span of the bridge is 6550 mm, with a rise of 1428 mm. The thickness of the 

arch ring is 220 mm. Detailed geometric characteristic of this bridge is shown in Fig-

ure 7 [9-10]. The boundary at the side and bottom of the backfill as well as the springer 

are all unilateral contact conditions. The load pattern considered here is a pressure 

with a width of 300 mm, acting at the 1/4 span of the bridge. The 80 bricks of the ring 

are considered rigid elements, arranged according to the real bond pattern. The back-

fill region will be discretized by the aforementioned deformable triangular elements, 

and the proposed remeshing procedure will be employed to refine the elements in this 

region. Regarding the constitutive model of the backfill, besides the standard Mohr-

Coulomb model, we also include the criterion of tension cut-off [9-10] and the corre-

sponding constraint shares the same expression as Eq. (8) after the linearization. 

Therefore, we can keep solving using Eq. (9) to get the collapse results. The material 

parameters for the brick, infill, and interfaces are listed in Table 2.  
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Elements Interfaces 

brick backfill Brick-to-brick Brick-to-backfill Backfill-to-backfill 

Density ρ  

[kg/m3] 
20 20 - - - 

Frictional  

angle φ [°] 
- 37 37 37 37 

Cohesion c 

[MPa] 
- 0.01 10-6 10-6 0.01 

Tensile strength 

σt [MPa] 
- 0 0 0 0 

Table 2: Material parameters for the elements and interfaces, Prestwood bridge. 

(a) 

 

(b) 

 

Figure 8: Triangular mesh for the backfill of Prestwood Bridge: (a) fine mesh; (b) in-

itial coarse mesh for the remeshing procedure. 

The triangular mesh generator employed here is also “MESH2D” [21]. For a 

benchmark purpose, we first present the result of the single-step limit analysis through 

solving (9), without appliance of the remeshing. The mesh size for the backfill region 

is quite fine. The total amount of triangles for the discretization is 1605 (Figure 10a). 

 

Figure 9: Collapse of Prestwood bridge predicted from the standard limit analysis: 

dissipation distribution. 

In this case, the overall collapse mechanism of the arch is basically the standard 4 

hinge mechanism (Figure 9). Instead of the occurrence of a single hinge, however, 

clusters of hinges appear at the keystone or springer due to the presence of infill, and 
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the locations agree with the one indicated in the classic 4 hinge mechanism. The load-

ing area of the backfill moves downward due to the pressing, while the left part of the 

fill side goes up along with the deformation of the ring. The infill elements in these 

two regions thus present a large dissipation, with rich crack propagations. Short cracks 

also spread at the backfill near the right springer, due to the appearance of multiple 

intrados hinges. 

(a)  

(b)  

(c)  

(d)  

Figure 10: Collapse of Prestwood bridge predicted from the limit analysis with itera-

tive remeshing procedure: dissipation distribution. 

Then, we employ the proposed remeshing procedure to analyze the collapse of 

Prestwood Bridge. Given the best performance of edge-split refinement, below we 
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only consider this scheme to refine the element candidates in each iteration. The con-

vergence criterion is based on the error of the load prediction, where the tolerance e 

is set as 0.001. In the initial model, a coarse mesh for the backfill region is employed 

(see Figure 8b, also generated by “MESH2D” [21]). The amount of the element is 

568. Critical frames of the collapse prediction during the iterations are given in Figure 

10. 

In the initial solution, we can find that the overall motion of the bridge is analogous 

to the result from the one-step limit analysis, and the distribution of the large-dissi-

pated infill elements is generally the same (see Figure 9). However, the dissipation at 

the left passive-motion area is significantly higher, while in the loading area at the 

right, we note a crack with a very broad separation. Both of them are the consequence 

of employing the element with a large size. Further refinement of the element appears 

in those infills with large deformation, which rapidly decreases the dissipation in the 

backfill. In step 6, the collapse load has decreased below the prediction of limit anal-

ysis without remeshing. In the final several iterations, the mesh of the infill in the left 

passive motion and the right external loading areas have become extremely fine. We 

also note that numerous micro-cracks appear in those two regions, instead of the sev-

eral large cracks in the initial solution. As a result, the behavior of these two areas of 

backfill becomes more deformable. The converged load prediction in the last step is 

7.4% more conservative than the one from the normal limit analysis. However, we 

should remark on the explosion of the number of elements due to the successive ap-

pliance of the refinement scheme. 

4  Conclusions 

This paper has developed a remeshing procedure for the finite element limit analysis 

with unstructured triangular mesh. In each iteration, we select the element candidates 

with large energy dissipation and then apply the specific scheme to refine these ele-

ments. Three different refinement schemes are proposed. To understand their perfor-

mance, the remeshing procedure implementing those three refinement approaches was 

first applied to analyze the strip footing problem as a comparative study. Then, the 

remeshing procedure was employed to refine the mesh of the backfill region when 

analyzing the collapse of Prestwood Bridge, to test the robustness and efficiency of 

this approach in more large-scale problems. 

The results of the strip footing problem demonstrate the effectiveness of the pro-

posed approach. The load prediction becomes close to the analytical solution after the 

iterations, whatever refinement approaches are employed. Among all the refinement 

schemes proposed, the edge-split refinement performs the best in the aspect of both 

accuracy and efficiency. The deviation of the final prediction is within 7% while the 

time consumption is 8 – 15% of the other two counterparts. The case study of Prest-

wood Bridge further illustrates the excellent robustness of the remeshing procedure in 

a more large-scale scenario, through which the mesh dependence of the results can be 

effectively reduced. After several iterations, the predicted load has dropped below the 

estimation from the normal limit analysis with a fine mesh. Moreover, the computa-

tional cost of the remeshing procedure at this stage is also comparatively inexpensive. 
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However, such cost may rapidly grow in the final several iterations before the conver-

gence due to the explosion of the element amounts. 
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