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Abstract 
 

This paper delves into the practical implications of two modal dynamic analysis 

methods: eigenvector modal analysis and Ritz vector modal analysis. Eigenvector 

modal analysis, a staple in engineering practice, provides crucial insights into the 

dynamic behaviours of structures during free vibrations and forms the basis for modal 

superposition dynamic response analysis. Ritz vector modal analysis, primarily used 

for modal superposition dynamic response analysis, is examined for its unique 

characteristics and advantages. We emphasize the practical relevance of mode shapes 

and participation factors and demonstrate the load dependent nature of participation 

factors. The intricacies of Ritz analysis are explored, particularly highlighting its load 

dependent nature and the non-orthogonality of mode shapes for the applied loads. The 

essential steps and formulas for conducting Ritz analysis are presented, and practical 

recommendations for its uses in modal superposition dynamic response analysis are 

offered. We conclude by assessing the efficacy of Ritz vector modal analysis in modal 

superposition dynamic response analysis, underscoring its efficiency and potential 

benefits for engineering applications. 
 

Keywords: modal analysis, participation factor, dynamic response, eigenvector, Ritz 

vector, modal superposition 
 

1 Introduction 
 

In structural engineering practice, modal analysis is widely used to investigate 

dynamic characteristics of structures, such as natural frequencies and mode shapes. 
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Modal analysis is also needed in dynamic response studies where the modal 

superposition dynamic response (MSDR) method is used. 
 

Eigenvector modal analysis is load independent and focuses on studying the 

dynamic properties of structures under free vibrations. On the other hand, the MSDR 

analysis, including response spectrum analysis, harmonic analysis, footfall analysis, 

etc., studies dynamic responses of structures subjected to specific loads (represented 

by a load vector) [1]. The inefficiency of the MSDR analysis can arise if it uses the 

eigenvector modal analysis results, which produce many modes that are orthogonal to 

the load vector. These orthogonal modes do not contribute to the dynamic response 

and lead to redundant calculations. Ritz vector modal analysis [2], referred to as "Ritz 

analysis" in this paper, can be used to address this inefficiency. Like eigenvector 

modal analysis, Ritz analysis also gives natural frequencies and mode shapes, but its 

mode shapes are not orthogonal to the given load vector. Consequently, redundant 

calculations can be prevented by utilising Ritz analysis results in the MSDR analysis, 

thereby enhancing the efficiency and effectiveness of the analysis. 
 

This paper aims to explore the two modal analysis methods, examine their 

differences, and present suitable applications for each of them. Additionally, an 

explanation of the participation factors, reflecting the relative contribution of each 

mode to the total dynamic response under the action of the loads considered, is given 

– a topic that engineers sometimes misunderstand.  
 

2 Eigenvector modal analysis 
 

Eigenvector modal analysis studies the dynamic properties of structures under free 

vibration. Its results are used to (i) understand the structure's dynamic properties and 

(ii) provide input for dynamic response analysis using the MSDR method. 
 

Equation (1) is the governing dynamic equation [1], with the left hand side terms 

representing the inertia force, damping force, and restoration force from element 

deformations, respectively. The right hand side contains the applied load, expressed 

by the product of load vector and time variation function. This is not a general form 

of dynamic load, but as we will see later, this type of dynamic load is necessary to 

calculate modal participation factors, as well as the dynamic responses, using the 

MSDR method. 
 

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢} = {𝑃}𝑓(𝑡)       (1) 

 

In eigenvector modal analysis, damping tends to be ignored because its effects on 

frequencies and mode shapes are very small, which is the case with almost all 

engineering problems. Also, as mentioned above, eigenvector modal analysis studies 

free vibration with no loads present. Considering these two factors, the governing 

equation for the eigenvector modal analysis is given by [2]. 
 

[𝐾][𝛷] = [𝑀][𝛷][𝛺]          (2) 
 

 This is an eigenvalue problem; the unknowns are the eigenvalue matrix [ ] and 

the eigenvector matrix []. Many solution methods are available, such as the Jacobian 
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method for solving all eigenvalues & eigenvectors and the subspace iteration method 

for solving the first few eigenvalues & eigenvectors. The solution to this equation is 

not discussed here but can be found in [1] or any other dynamic analysis books.  Here, 

we assume the eigenvalue and eigenvector matrices, [ ] and [ ] have been found 

and are expressed as 
 

[𝛺] =

[
 
 
 
𝜔1

2 0 0 0

0 𝜔2
2 0 0

0 0 . . . 0
0 0 0 𝜔𝑚

2 ]
 
 
 

         (3) 

 
 

[𝛷] = [{𝜑1} {𝜑2} . . . {𝜑𝑚}] = [

𝜑11 𝜑12 . . . 𝜑1𝑚

𝜑21 𝜑22 . . . 𝜑2𝑚

. . . . . . . . . . . .
𝜑𝑚1 𝜑𝑚2 . . . 𝜑𝑚𝑚

]  (4) 

where: 

𝜔𝑖 – circular frequency of mode i     i = 1, 2, 3…m 

{𝜑i} – eigenvector of mode i     i = 1, 2, 3…m 
 

2.1 Characteristics of eigenvectors 
 

(i) Eigenvectors are orthogonal to each other with respect to the mass matrix, as 

shown in equation (5), in which the transpose of one eigenvector multiplied by 

the mass matrix and then by the same eigenvector is equal to the modal mass for 

the same mode. The transpose of one eigenvector multiplied by the mass matrix 

and then by a different eigenvector equals zero.  

 

[𝛷]𝑇[𝑀][𝛷] = [

𝑚1 0 0 0
0 𝑚2 0 0
0 0 . . . 0
0 0 0 𝑚𝑚

]        (5) 

 

 

(ii) Eigenvectors are orthogonal to each other with respect to the stiffness matrix, as 

shown in equation (6), where k1, k2 , etc. represent modal stiffness. 

 

[𝛷]𝑇[𝐾][𝛷] = [

𝑘1 0 0 0
0 𝑘2 0 0
0 0 . . . 0
0 0 0 𝑘𝑚

]        (6) 

 

 

(iii) Eigenvectors are orthogonal to each other with respect to the damping matrix. 

This orthogonality is conditional, and the use of classical damping is required. 

Classical damping, [𝐶], is defined as a linear combination of the stiffness and 

mass matrices, as shown in equation (7): 
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[𝐶] = 𝑎[𝑀] + 𝑏[𝐾]          (7) 

where: 

a – stiffness proportional damping coefficient 

b – mass proportional damping coefficient 
 

In this case, the eigenvectors will have a generalised orthogonality with respect to 
[𝐶]. The use of classical damping is required for decoupling the multiple degrees of 

freedom (DOF) system into the required number of single DOF systems, which 

provides the basis for the MSDR analysis. In the following sections, classical damping 

is assumed throughout.   
 

2.2 Dynamic equations in modal coordinates 
 

Assuming eigenvectors are known, they can be taken as a new coordinate system, i.e. 

the modal coordinate system in eigenvector space, and the dynamic equation (1) in 

the global coordinate system can be transformed to this modal coordinate system. 

Assuming {𝑞}, {�̇�}, and {�̈�} are the displacement, velocity and acceleration vectors in 

the modal coordinate system, respectively. The original nodal displacement, velocity, 

and acceleration vectors can be expressed in this modal coordinate system as: 
 

{𝑢} = [𝛷]{𝑞}             
{�̇�} = [𝛷]{�̇�}            (8) 
{�̈�} = [𝛷]{�̈�}             

 

The substitution of equation (8) into equation (1) gives: 
 

[𝑀][𝛷]{�̈�} + [𝐶][𝛷]{�̇�} + [𝐾][𝛷]{𝑞} = {𝑃}𝑓(𝑡)     (9) 
 

Multiplying equation (9) by the transpose of the eigenvector matrix from the left 

gives: 
 

[𝛷]𝑇[𝑀][𝛷]{�̈�} + [𝛷]𝑇[𝐶][𝛷]{�̇�} + [𝛷]𝑇[𝐾][𝛷]{𝑞} = [𝛷]𝑇{𝑃}𝑓(𝑡)  (10) 
 

Using the orthogonal characteristics of eigenvectors with respect to mass, damping, 

and stiffness matrices, equation (10) can be reduced into m uncoupled single DOF 

equations: 
 

{𝜑}𝑖
𝑇[𝑀]{𝜑}𝑖{�̈�} + {𝜑}𝑖

𝑇[𝐶]{𝜑}𝑖{�̇�} + {𝜑}𝑖
𝑇[𝐾]{𝜑}𝑖{𝑞} = {𝜑}𝑖

𝑇{𝑃}𝑓(𝑡) 

(i = 1, 2…m)  (11) 
 

Let: 

𝑚𝑖 = {𝜑}𝑖
𝑇[𝑀]{𝜑}𝑖      𝑐𝑖 = {𝜑}𝑖

𝑇[𝐶]{𝜑}𝑖      𝑘𝑖  = {𝜑}𝑖
𝑇[𝐾]{𝜑}𝑖   (12) 

 

Where:  

mi, ci and ki are modal mass, modal damping, and modal stiffness, respectively 

for mode i. 
 

Then m uncoupled single DOF equations can be simplified as: 
 

𝑚𝑖�̈�𝑖 + 𝑐𝑖�̇�𝑖 + 𝑘𝑖𝑞𝑖 = {𝜑}𝑖
𝑇{𝑃}𝑓(𝑡)   (i = 1, 2, …m)    (13) 
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Which can be further simplified to: 
 

�̈�𝑖 + 2𝜉𝑖𝜔𝑖�̇�𝑖 + 𝜔𝑖
2𝑞𝑖 = 𝛤𝑖𝑓(𝑡)    (i =1, 2, … m)      (14) 

 

Where: 

2𝜉𝑖𝜔𝑖 =
𝑐𝑖

𝑚𝑖
                            𝜔𝑖

2 =
𝑘𝑖

𝑚𝑖
 

𝛤𝑖 =
{𝜑}𝑖

𝑇{𝑃}

𝑚𝑖
  modal participation factor (discussed in the next section) 

𝜉𝑖     critical damping ratio for mode i 

𝜔𝑖     circular frequency for mode i 
 

 

2.2.1 Summary of main features of the dynamic equation in the modal coordinate 

system 
 

• The multiple DOF dynamic equations are simplified to m uncoupled single 

DOF equations. 

• The m uncoupled single DOF equations are in the same form as that shown in 

equation (14). 

• Only one equation needs to be solved numerically or analytically to obtain the 

general solution. 

• The solutions for other equations/modes can be easily obtained by factorising 

the general solution by the relevant modal participation factor . 
 

 

2.2.2 Participation factors 

• Participation factors for imposed load: 

The participation factor  of mode i is equal to the product of the transpose of 

the mode shape vector and the load vector, divided by the modal mass, mi. 
 

𝛤𝑖 =
{𝜑}𝑖

𝑇{𝑃}

𝑚𝑖
  i = 1, 2 … m          (15) 

 

• Participation factors for ground acceleration load: 

The equivalent imposed load due to ground acceleration is [1]: 
 

{𝑃}𝑓(𝑡) = −[𝑀]{𝑟}𝛼(𝑡)            (16) 
 

Where: 

{r} – displacement transformation vector [3] that gives the active 

degree of freedom due to ground acceleration. 

(t) – ground acceleration. 
 

According to equation (16), the participation factor for mode i is: 
 

𝛤𝑖 =
{𝜑}𝑖

𝑇{𝑃}

𝑚𝑖
=

{𝜑}𝑖
𝑇[𝑀]{𝑟}

𝑚𝑖
   i = 1,2, … m     (17) 

 

• Characteristics of participation factors 
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a. Participation factors reflect the relative contribution of each mode to the 

total dynamic response under the action of the loads considered. 

b. Participation factors are load dependent; the associated load vector should 

always be remembered when discussing and using the participation factors. 

c. Participation factors can be defined only when the dynamic loads can be 

decoupled into the product of a load vector {P} and a time variation function 

f (t). A load vector represents the spatial distribution of the loads, and the 

time function gives the variation of the loads with time. 

d. The more the mode shape vector {𝜑} is parallel to the load vector {𝑃}, the 

larger the participation factor for that mode, and vice versa. 

e. If a mode shape is orthogonal to the load vector {𝑃}, the participation factor 

for that mode is zero, i.e. this mode will make no contribution to the total 

dynamic response from that load. 

f. Participation factors given by most dynamic analysis software are for 

ground acceleration loads, so they can be used only for ground acceleration 

dynamic response analysis. 

g. For a general imposed load case, participation factors, 𝛤𝑖 , nodal 

displacement, 𝛿𝑖.𝑗 ,  nodal mass, 𝑀𝑗 , and applied nodal loads  𝑝𝑗  should 

satisfy the following equation: 
 

𝑀𝑗 ∑ 𝛿𝑖,𝑗
𝑚
𝑖=1 𝛤𝑖 = 𝑝𝑗    (j = 1, 2, 3 …. n – node number) 

Where: i,j is node j displacement in mode i 
 

h. For a ground acceleration load case, participation factors and the modal 

displacements should satisfy this equation. 
 

∑ 𝛿𝑖,𝑗
𝑚
𝑖=1 𝛤𝑖 = 1.0    (j = 1, 2, 3 …. n – node number) 

 

 
 

 

3 Modal Superposition Dynamic Response Analysis 
 

Before delving into the Ritz analysis, the analysis procedures and characteristics of 

MSDR analysis are summarised below, which helps us understand the benefit of using 

Ritz analysis in MSDR analysis. 
 

 

3.1 Procedures of MSDR analysis 

• Carry out a modal dynamic analysis to obtain the frequencies, mode shapes 

and participation factors of the model. 

• Transform the governing dynamic equations into the modal coordinate system 

and decouple the multiple DOF equation into m uncoupled single DOF 

equations. 

• Solve one of the m single DOF equations to get the dynamic response of that 

mode. 
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• Obtain the response for all other modes by appropriately factorising the 

responses obtained above by the relevant participation factors and frequency 

related factors. 

• The total dynamic response is the sum of the responses from all the modes. 

This sum depends on the type of analysis being carried out, such as the 

arithmetic sum, in the case of time history analysis, or SRSS (Square Root of 

the Sum of the Squares) and CQC (Complete Quadratic Combination) [1], in 

the case of steady state dynamic response analysis, such as harmonic and 

response spectrum seismic analyses.  
 

3.2 MSDR analysis results 

• As the total dynamic response is the sum of the responses from all modes 

considered, the more modes are considered, the better the results. However, as 

higher mode contributions become progressively smaller, they are often 

ignored in practice. 

• Each mode's contribution to the total response is related to its participation 

factor; the larger the participation factor, the bigger the contribution. 

• Each mode's dynamic response depends on its modal frequency and the load's 

dominant frequency. If modal and load frequencies are close, the response will 

be large. 

• The dynamic response of each mode also depends on its modal damping; 

obviously, the higher the modal damping, the lower the contribution this mode 

makes. 

• If a mode shape is orthogonal to the load vector, i.e. the participation factor  

= 0, this mode will make no contribution to the total dynamic response 

• If many modes are orthogonal or closed to orthogonal to the load vector, the 

MSDR analysis using eigenvector modal analysis results will be inefficient, as 

many redundant calculations are involved. 

• To have reliable results from the MSDR analysis, the total participation masses 

should be higher than a certain level, e.g. ≥ 90% required by most design 

codes. To achieve the required participation mass for a large model, the total 

number of modes required could be very large, even exceeding computer 

capacity and making the analysis impractical. 
 
 

 

 
 

4  Ritz Analysis 
 

Ritz analysis gives the same type of results as the eigenvector modal analysis in terms 

of modal frequencies and mode shapes. The main difference between them is that the 

Ritz analysis considers the applied loads, while the eigenvector modal analysis does 

not. Ritz analysis works in the Ritz vector space, generated from the load vector in 

such a way as to guarantee that none of the modes are orthogonal to the load vector. 
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4.1 The Ritz analysis – general procedure 

• To generate Ritz vectors that are not orthogonal to the load vector, a subspace 

called Ritz vector space is created with a dimension equal to the required 

number of modes. 

• The stiffness matrix [K] and mass matrix [M] are transformed from the 

eigenvector space to the Ritz vector space, as explained in the next section. 

Since the dimension of the Ritz vector space is much smaller than the original 

eigenvector space, the total number of DOF of the system is significantly 

reduced. 

• The reduced eigenvalue problem in the Ritz vector space is solved directly to 

obtain the eigenvalues (frequencies) and the eigenvectors (mode shapes) in the 

Ritz vector space. 

• The mode shapes from the Ritz vector space are then transformed back to the 

eigenvector space to have the normal eigenvectors (mode shapes). 

• The eigenvalues are the same in the Ritz vector space and the eigenvector 

space, so no transformation is necessary. 

• After obtaining the frequencies and mode shape, the participation factors can 

be calculated using equations (15) or (17) given above. 

• Once all the results are obtained, the analysis is completed. 
 

 

4.2 Steps in the Ritz analysis 

• Generate Ritz vectors {xi} from a given load vector {P}, i = 1, 2, 3 … R, where 

R is the number of the Ritz vectors (modes) required.  R is governed by the 

required participation mass, and it is normally much smaller than the number 

of eigenvector modes  
 

The first Ritz vector: 

Calculate the displacement vector from the given load. 
 

{𝑦1} = [𝐾]−1{𝑃}         (18) 
 

Normalise the displacement vector, which gives the first Ritz vector 

{x1}. 
 

{𝑥1} =
{𝑦1}

√{𝑦1}𝑇[𝑀]{𝑦1}
          (19) 

 

The second and the following Ritz vectors: 

Take the product of the mass matrix and the previous Ritz vector as the 

fictitious load vector, then use it to calculate the displacement vector. 
 

{𝑦𝑖
∗} = [𝐾]−1[𝑀]{𝑥𝑖−1}          (20) 

 

Make the displacement vector orthogonal to other Ritz vectors. 
 

{𝑦𝑖} = {𝑦𝑖
∗} − ∑ {𝑥𝑗}

𝑇
[𝑀]𝑖−1

𝑗=1 {𝑦𝑖
∗}{𝑥𝑗}      (21) 
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Normalise the orthogonalised displacement vector, which gives the next 

Ritz vector [xi] 
 

{𝑥𝑖} =
{𝑦𝑖}

√{𝑦𝑖}
𝑇[𝑀]{𝑦𝑖}

    i = 2, 3, … R    (22) 

 

 

• Express the eigenvector space eigenvector matrix by the Ritz vector space 

eigenvector matrix 
 

The Ritz vector matrix is composed by the R Ritz vectors: 
 

[𝑋] = [{𝑥1} {𝑥2} . . . {𝑥𝑅}]         (23) 
 

Let [𝛷∗] represent the eigenvector matrix in the Ritz vector space, then the 

eigenvector matrix [𝛷] in the eigenvector space can be expressed as: 
 

[𝛷] = [𝑋][𝛷∗]           (24) 
 

 

• Substitute equation (24) into the standard eigenvalue problem equation (2) 

gives: 
 

[𝐾][𝑋][𝛷∗] = [𝑀][𝑋][𝛷∗][𝛺]        (25) 
 

Pre-multiplying equation (25) by the transpose of the Ritz vector matrix [X]T 

gives: 
 

[𝑋]𝑇[𝐾][𝑋][𝛷∗] = [𝑋]𝑇[𝑀][𝑋][𝛷∗][𝛺]       (26) 
 

Let 

[𝐾∗] = [𝑋]𝑇[𝐾][𝑋]            

[𝑀∗] =  [𝑋]𝑇[𝑀][𝑋]            
 

Then, the eigenvalue problem in the Ritz vector space is simplified as equation 

(27), and it is the same as equation (2): 
 

[𝐾∗][𝛷∗] = [𝑀∗][𝛷∗][𝛺]         (27) 
 

 

• Solve equation (27) in the same way as equation (2); the eigenvectors and 

eigenvalues in Ritz vector space are obtained. 
 

As the dimension R is very small, the Jacobean method is used to solve for all the 

eigenvectors [𝛷∗] and eigenvalues [𝛺]. Eigenvalues [𝛺] are the same in both the 

eigenvector space and the Ritz vector space, while the eigenvector matrix [𝛷∗] 
needs to be transformed back to the eigenvector space from: 

 

[𝛷] = [𝑋][𝛷∗]            (28) 
 

So now, all eigenvectors and eigenvalues in the eigenvector space are known, and the 

problem is solved. 



10 

 

4.3 Summary of the Ritz analysis 

• Ritz analysis is load dependent, so a load vector is needed. As mentioned 

above, the mode shapes from the Ritz analysis will not be orthogonal to the 

given load vector. 

• Ritz analysis can achieve more participation mass with fewer modes than is 

required by the eigenvector modal analysis. 

• Ritz analysis is a direct method with much reduced DOF, so the analysis is 

generally much faster than the eigenvector modal analysis and requires less 

memory space. 

• Ritz analysis is a constrained and approximate method, as the mode shapes are 

restrained to be in the Ritz vector space after transformation. 

• Although Ritz analysis is approximate, it is more useful in some practical cases 

than the ‘precise’ eigenvector modal analysis, especially for large DOF 

problems. 

• Because its results are load dependent, results from the Ritz analysis can be 

used in the MSDR analysis only when the loads are the same as those used in 

the Ritz analysis. 

• The frequencies and mode shapes from the Ritz analysis may be influenced by 

the total number of modes analysed. For example, the first 6 modes may be 

different from two separate Ritz analyses of the same model if they consider 

different total number of modes. Because of this, a slightly higher number of 

modes than required is recommended. 

• Generally, natural frequencies from the Ritz analysis are equal to or higher 

than the natural frequencies from the eigenvector modal analysis; this is 

because the Ritz analysis represents a constrained solution. 

• The lower frequency results are more accurate compared with those from the 

eigenvector modal analysis, although some higher frequency results may not 

be, this does not have a significant effect on the MSDR analysis that uses Ritz 

analysis results, as higher mode contributions to the dynamic responses are 

very small, even negligible. 

• If the Ritz vector analysis results are used in the MSDR analysis, and the loads 

to be analysed are not the same as the load vector used in the Ritz analysis, the 

MSDR results are approximate and should be used with caution. 
 
 

 

 

4.4 When to use Ritz analysis 

• In seismic analysis, when the required percentage of participation masses 

cannot be achieved in eigenvector modal analysis using a reasonable number 

of modes. 

• When the model size is very large, and the load directions are known, e.g., 

when analysing the dynamic response to wind load, seismic load, footfall load, 

etc. 
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• When localised responses are of interest, but the localised mode cannot be 

obtained from the eigenvector modal analysis. This requires the software to 

allow the user to define the load vector for the Ritz analysis. 
 

4.5 When not to use Ritz analysis 

• For a general study of dynamic properties of structures, the eigenvector modal 

analysis is more suitable because the Ritz analysis does not give all possible 

modes. 

• For small and medium size models, when the required participation mass can 

be achieved using a reasonable number of modes in the eigenvector modal 

analysis. 

• If the Ritz analysis can only take x, y & z direction ground motion as input load 

vectors (a common case in most software), and the dynamic loads are not in these 

three directions, e.g. the twisting load about vertical axis. 
 

4.6 Number of modes needed in the Ritz analysis 

• Considering a given direction in the Ritz analysis, e.g. vertical direction, the 

number of modes considered should cover all possible modes in that direction, 

e.g. the symmetric and un-symmetric ones. 

• The target number of modes in the Ritz analysis should give very high 

participation masses, e.g. 98% or higher, as Ritz analysis can achieve high 

participation masses with a relatively small number of modes. 

• If it is unclear how many modes are needed to achieve the required 

participation mass, a trial-and-error approach can be used, as the Ritz analysis 

is fast. 
 

 

4.7 The accuracy of MSDR analysis using Ritz analysis results 

• In the MSDR analysis, if dynamic loads (e.g. seismic loads) are exactly the 

same as the load vector used in the Ritz analysis, the MSDR analysis results 

would be almost 100% accurate. 

• If dynamic loads are similar to the load vectors used in the Ritz analysis, the 

analysis results from MSDR analysis are approximate but still usable in 

engineering practice; for example, footfall analysis uses the Ritz approach 

with the vertical load vector, and x-direction wind load response uses the Ritz 

approach with the x-direction load vector. 

• If dynamic loads are orthogonal (or close to orthogonal) to the load vectors 

used in the Ritz analysis, the MSDR analysis results could be totally wrong. 
 
 

5 Conclusions 
 

• Eigenvector modal analysis is the general method of studying the dynamic 

properties of a structure. 

• Participation factors are load dependent. 
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• In most software, participation factors are given for ground motions; if this is 

the case, they should not be used for other load cases. 

• If many modes from eigenvector analysis are orthogonal (or close to 

orthogonal) to the load vector, the MSDR analysis using eigenvector analysis 

results is inefficient, as it would involve redundant calculations. 

• Ritz analysis gives modes that are not orthogonal to the load vector considered. 

• Ritz analysis results lead to a more efficient MSDR analysis with no redundant 

calculations compared to the eigenvector modal analysis. 

• Ritz analysis does not give all possible natural modes, so eigenvector modal 

analysis should be used in general studies of structural dynamic properties.  
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