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Abstract 
 

The accuracy and reliability of the finite element method (FEM) in free vibration 

analysis of beams and frameworks are assessed by the dynamic stiffness method 

(DSM). When applying FEM, individual beams and frameworks are modelled by 

using a progressively increasing number of elements. The accuracy and convergence 

of results are then judged against exact results using DSM. The limitation of FEM in 

which free vibration analysis cannot be carried out beyond the order of the mass and 

stiffness matrices, and the loss of accuracy in computing higher natural frequencies, 

are highlighted. The investigation has shown that in the low and medium frequency 

range, FEM is reliable, but in the high frequency range, FEM can become inaccurate 

and unreliable. Evaluation of modal analysis using FEM in the high frequency range 

is important, particularly for the statistical energy analysis method, because the modal 

density of structures in the high frequency range is usually high. Furthermore, the 

need for accurate and reliable high frequency vibration analysis for beams and 

frameworks is important in energy flow analysis. It is in this context that the 

assessment of FEM in free vibration analysis of beams and frameworks is expected to 

be most effective and useful. 

 

Keywords: beam, framework, finite element method, dynamic stiffness method, 

Wittrick-Williams algorithm, shape function. 
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1  Introduction 
 

The finite element method (FEM) is a well-recognised universal tool in structural 

analysis and design, which can solve multifaceted problems by handling complex 

geometries and boundaries. However, FEM is an approximate and basically, a 

numerical method. Nevertheless, it is sufficiently general and extremely effective in 

solving multi-physics problems. Although FEM originated as a break-through in solid 

mechanics, it has now infiltrated a wide range of disciplines including fluid 

mechanics, fatigue and fracture mechanics, thermal and electrical analysis, amongst 

many others. For structural or solid mechanics applications, there are many excellent 

books on FEM [1, 2]. The method has been successfully applied to beam and frame 

vibration problems [3, 4]. The basic building block in FEM is the so-called finite 

element, which for dynamic problems, possesses both the stiffness and mass 

properties of the element. The structure to be analysed is generally idealised as a 

collection of (finite) elements joined together, and FEM works on the premise that if 

the properties of all individual elements in the structure are known, the properties of 

the overall final structure can be worked out by assembling the individual properties 

of each element in the structure. The fundamental assumption based on which the 

FEM works is the assumption of shape functions which define the deformed shape of 

individual elements in the structure. Formulating a shape function requires some 

engineering judgement, which obviously, introduces approximation in the result. 

However, when the number of elements in FEM is increased, the result becomes more 

and more accurate and converges towards the exact result. Clearly, FEM is restricted 

to the total degrees of freedom in the structure. For instance, when carrying out a free 

vibration analysis using FEM, if the mass and stiffness matrices of a structure are each 

of the order of n×n, there is no way, one can compute the (n+1)th natural frequency 

of the structure. Moreover, the higher order natural frequencies close to and including 

the nth natural frequency are expected to be inaccurate or even unreliable. This is a 

shortcoming of FEM, particularly when carrying out free vibration analysis in the high 

frequency range, which is required in the statistical energy analysis (SEA) method as 

the modal density in the high frequency range is generally very high [5, 6]. 

 

     Against the above background, there is a powerful alternative to FEM in free 

vibration analysis which has superior modelling capability. The alternative is that of 

the dynamic stiffness method (DSM). It is based on the exact solution of the governing 

differential equation of the structural element when undergoing free natural vibration. 

There are of course, similarities between FEM and DSM. Both are based on the 

concept of shape functions and nodes of a structure. Notably, DSM uses the 

frequency-dependent exact shape functions obtained from the solution of the 

governing differential equation as opposed to the frequency-independent assumed 

shape functions used in FEM. The procedure to assemble properties of individual 

structural elements to form the overall matrix is essentially the same. However, there 

are some significant differences between FEM and DSM. For instance, when solving 

free vibration problems, the mass and stiffness matrices of individual elements are 

assembled separately in FEM to form the overall mass and stiffness matrices of the 

final structure. However, in DSM, there is only one frequency-dependent matrix 
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called the dynamic stiffness matrix containing both the mass and stiffness properties 

of the element, which is assembled to form the overall dynamic stiffness matrix of the 

final structure. The other striking feature which distinguishes the two methods is the 

solution technique for the eigenvalue problem yielding the natural frequencies. FEM 

generally leads to a linear eigenvalue problem of the type K- M=0 where K and M 

are respectively the overall stiffness and mass matrices of the complete structure and 

= 2 is the eigen parameter,  being the circular or angular frequency. By contrast, 

DSM leads to a non-linear eigenvalue problem of the type KD()=0, where KD() is 

the frequency dependent dynamic stiffness matrix of the complete structure. The best 

available solution technique to date, is the Wittrick-Williams algorithm [7] which is 

routinely used in DSM. As all the assumptions made in DSM are within the limits of 

the governing differential equations, the results from DSM are designated as exact 

and they are independent of the number of elements used in the analysis. Thus, unlike 

FEM, further discretization of a structure in DSM is not needed unless there is a 

change in the geometry or material properties. For instance, a single structural element 

can be used in DSM to compute any number of natural frequencies of a uniform beam 

to any desired accuracy, which of course, is impossible in FEM. Basically, DSM 

accounts for an infinite number of degrees of freedom of a freely vibrating structure 

whereas FEM being restricted to a selected number of degrees of freedom at the nodes, 

does not. For standard structures like beams and plates, DSM gives the same results 

as the classical theories based on governing differential equations. The purpose of this 

paper is to assess the accuracy and reliability of FEM in free vibration analysis of 

beams and frameworks, essentially by comparison with DSM. 
 

2  Free vibration analysis of beams and frameworks using FEM 
 

The basic building blocks in the free vibration analysis of beams and frameworks in 

FEM are the mass and stiffness matrices of individual elements which are derived 

using assumed shape functions as polynomials in terms of arbitrary constants. These 

matrices for beam elements are derived from separate consideration of axial and 

bending displacements. The procedure can be found in standard FEM texts [2, 8]. 

 

     In a rectangular Cartesian coordinate system, Figure 1 shows a beam element of 

length L with its centroidal axis coinciding with the x-axis of the coordinate system. 

The origin is taken to be at the left-hand end at node 1 whereas the right-hand end at 

a distance L is at node 2 in the usual (customary) notation.  

                        y 

 

 

 

 

 

Figure 1. Coordinate system and notation for a beam element. 

x 

x 
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L 
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     Now referring to Figure 2 which shows a beam element undergoing only axial 

deformations, with displacements x1 and x2 at nodes 1 and 2, respectively and the 

corresponding axial forces being fx1 and fx2, respectively, the mass and stiffness 

matrices of the beam in axial motion, can be written as [2, 8] 

 

              𝐦𝐀 =
𝜌𝐴𝐿

6
[
2    
1  

1
2
];         𝐤𝐀 =

𝐸𝐴

𝐿
[

1
−1

 
−1
   1

]                             (1) 

 

 

 

 

Figure 2. Nodal displacements and forces of a beam in axial deformation 

 

where EA, A and L are the extensional (or axial) rigidity, mass per unit length and 

the length of the element, respectively. 

 

     For harmonic oscillation with angular or circular frequency  rad/s, Equation (1) 

can be recast in the following form, relating the amplitudes of displacement vector A 

and the force vector fA. 

[𝐤𝐀 − 𝜔2𝐦𝐀]{𝛅𝐀} = {𝐟𝐀}                  (2) 

 

where A is the displacement vector {𝛿𝑥1  𝛿𝑥2}
𝑇 and fA is the force vector {𝑓𝑥1  𝑓𝑥2}

𝑇 

of the beam element and the upper suffix T denoting a transpose.  

 

     For free vibration problems, the right-hand side of Equation (2), i.e. the force 

vector {fA} will be zero. 

 

     Now referring to Figure 3 which shows the beam of Figure 1 undergoing flexural 

or bending displacement and bending rotation (y1, 1) and (y2, 2) at nodes 1 and 2, 

respectively with the corresponding forces and moments being (fy1, m1) and (fy2, m2), 

respectively, the mass and stiffness matrices of the beam in flexural or bending motion 

can be written as [2, 8] 

                                     y1, fy1                                                    y2, fy2 

                               1                                                                2              

                                     1, m1                                                  2, m2 

                             (x = 0)                                                    (x = L) 

        Figure 3. Nodal displacements and rotations of a beam in bending deformation. 

fx1 fx2 x1, x1, 

1 2 
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𝐦𝐁 =
𝜌𝐴𝐿

420
[

156  
22𝐿
54

−13𝐿 

22𝐿  
4𝐿2

13𝐿
−3𝐿2 

54  
13𝐿
156

−22𝐿

−13𝐿
−3𝐿2

−22𝐿
   4𝐿2

];   𝐤𝐁 =
𝐸𝐼

𝐿3 [

12   
6𝐿

−12
  6𝐿

   

6𝐿  
4𝐿2

−6𝐿
2𝐿2

−12  

 
−6𝐿
12

−6𝐿

6𝐿
2𝐿2

−6𝐿
  4𝐿2

]      (8) 

 

where A and EI are respectively the mass per unit length and bending rigidity, and L 

is the length of the beam. 

 

     For harmonic oscillation with angular or circular frequency  rad/s, Equation (8) 

can be recast in the following form, relating the amplitudes of displacement vector B 

and the force vector fB. 

[𝐤𝐁 − 𝜔2𝐦𝐁]{𝛅𝐁} = {𝐟𝐁}                  (9) 

 

where B is the displacement vector {𝛿𝑦1  𝜃1 𝛿𝑦2 𝜃2}
𝑇
 and fB is the force vector 

{𝑓𝑥1  𝑚1  𝑓𝑥2  𝑚2}
𝑇 of the beam element and T denotes a transpose.  

 

     For free vibration problems, the right-hand side of Equation (9), i.e. the force 

vector {fB} will be zero. 

 

     The axial and bending mass and stiffness matrices of the beam given by Equations. 

(1) and (8) can be combined with the help of Figure 4 to give the mass and stiffness 

matrices of the beam undergoing combined axial and bending deformations, i.e., the 

beam has three degrees of freedom (x, y and ) at each node, as follows [2, 8] 

 

𝐦 =

[
 
 
 
 
 
𝑎1 0 0 𝑎2 0 0
0 𝑏1 𝑏3 0 𝑏4 −𝑏5

0 𝑏3 𝑏2 0 𝑏5 𝑏6

𝑎2 0 0  𝑎1  0 0
0 −𝑏4 𝑏5 0   𝑏1 −𝑏3

0   −𝑏5 𝑏6 0  −𝑏3   𝑏2 ]
 
 
 
 
 

         (10) 

where 

 

a1 = AL/3;    a2=AL/6;    b1 = 13AL/35;    b2 = AL3/105;   

b3 =11AL2/210;  b4=9AL/70;    b5=13AL2/420;    b6= AL3/140      (11) 

 

and 

𝐤 =

[
 
 
 
 
 

𝑐1 0 0 −𝑐1 0 0
0 𝑑1 𝑑3 0 −𝑑1 𝑑3

0 𝑑3 𝑑2 0 −𝑑3 𝑑4

−𝑐1 0 0 𝑐1 0 0
0 −𝑑1 −𝑑3 0 𝑑1 −𝑑3

0   𝑑3 𝑑4 0 −𝑑3   𝑑2 ]
 
 
 
 
 

        (12) 

where 

 

c1 = EA/L;    d1 =12EI/L3;   d2 = 4EI/L;    d3 = 6EI/L2;    d4 = 2EI/L    (13) 
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                               y1, fy1                                                     y2, fy2 

 

 

 

 

                                    1                                                                 2 

                                      1, m1                                                 m 

 

 

                                                                   L 

 

x1, fx1 x2, fx2 

 
Figure 4. Nodal displacements and forces of a beam with axial and bending deformations. 

 

     The free vibration problem for a beam with three degrees of freedom (x, y and ) 

at each node can be formulated with the help of Equations (10) and (12), as 

[𝐤 − 𝜔2𝐦]{𝜹} = 0            (14) 

 

where  is the displacement vector {x1 y1 1 x2, y2 }T for a free-free beam. 

 

     For free vibration analysis of plane frames, the mass and stiffness matrices of each 

beam member in the frame given by Equations. (10) and (12) must be assembled with 

transformation from local to global co-ordinates so forming the overall mass (M) and 

stiffness (K) matrices of the final structure to formulate the linear eigenvalue problem 

 
[𝐊 − 𝜆𝐌]{𝚫} = 0             (15) 

 

where  = 2 is the eigen-parameter to be computed for non-trivial solution of , 

yielding the natural frequencies of the frame. 

 

     Thus, to arrive at the eigenvalue problem of Eq. (15), the element mass and 

stiffness matrices of all beam elements in a frame must be transformed from their local 

coordinates to the global (or datum) coordinate system and then assembled [2, 8] to 

form the overall mass (M) and stiffness (K) matrix of the complete structure. 

 

     Figure 5 shows that the local (xy) and global (XY) coordinate systems of a beam, 

with the local x-axis, making an angle  relative to the global (or datum) X-axis in the 

anti-clockwise direction.  

                                                                                x 

                           y              Y 

 

                                     

                                                              
                                    O                                                    X 

Figure 5. Local and global coordinate systems of a beam element (xy: Local 

coordinates; XY: Global coordinates) 
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     For the local and global coordinate systems shown in Figure 5, the transformation 

matrix T required to transform the mass and stiffness matrices of Equations. (10) and 

(12) is given by [2, 8] 

𝐓 =

[
 
 
 
 
 
  𝐶
−𝑆
  0
  0

  
0
0

   𝑆
   𝐶

  

0
0
0
0

   0
  0

 

1
0
0
0

   0
  0
  0
  𝐶
−𝑆
  0

    0    
0
0
𝑆
𝐶
0

0
0
0
0
0
1]
 
 
 
 
 

             (16) 

where 

C= cos ;    S = sin               (17) 

 

     The transformed mass and stiffness matrices from local to global coordinates are 

given by [2, 8] 

 

�̅� = 𝐓𝑇𝐦𝐓;       �̅� = 𝐓𝑇𝐤𝐓                (18) 

 

3  Free vibration analysis of beams and frameworks using DSM 
 

Unlike the finite element method (FEM), the dynamic stiffness method (DSM) is 

essentially an exact method which gives the same result as the classical approach of 

solution of the governing differential equation exactly. For a given structure, the 

conditions of equilibrium usually formulated for nodes are in fact conditions of a 

unique exact solution when the DSM is applied. This is in sharp contrast to FEM. In 

some other ways, such as the element assembly process, DSM is analogous to FEM. 

Nevertheless, there are significant differences between the two methods. For instance, 

as indicated earlier, when carrying out the free vibration analysis of a frame, FEM 

uses separate mass and stiffness matrices of individual elements and assembles them 

to form the overall mass and stiffness matrices of the frame. By contrast, the DSM 

uses only one frequency-dependent matrix of each individual element, which contains 

both the mass and stiffness properties of the element, and then assembles the dynamic 

stiffness matrices of all elements to form the overall dynamic stiffness matrix of the 

frame in the same way as FEM. The transformation matrix of Equation (16) can be 

used to transform the dynamic stiffness matrix of individual beam elements from local 

to global coordinates during the assembly process. The other main difference between 

FEM and DSM is, of course, in the solution technique for which the FEM generally 

leads to a linear eigenvalue problem whereas the DSM formulation generates a 

nonlinear eigenvalue problem requiring the application of the Wittrick-Williams 

algorithm [7]. The element dynamic stiffness matrices of a beam element in axial and 

flexural motions are available in the literature [9, 10], and they are summarised below.  

 

     Referring to Figure 2, the dynamic stiffness matrix of a beam element in axial 

motion which relates the amplitudes of axial forces to those of the displacements at 

nodes can be written as [9, 10] 

𝐤𝐃
𝐀(𝜔) = [

𝑎1 𝑎2

𝑎2 𝑎1
]             (19) 
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where 

𝑎1 =
𝐸𝐴

𝐿
𝜇 cot 𝜇 ;    𝑎2 = −

𝐸𝐴

𝐿
𝜇cosec𝜇           (20) 

with  

𝜇 = √
𝜌𝐴𝜔2𝐿2

𝐸𝐴
               (21) 

and EA and L which are axial or extensional rigidity and length of the beam as defined 

previously. 

 

     Similarly, referring to Figure 3, the frequency-dependent dynamic stiffness matrix 

of the beam in Figure 1 in bending motion can be written as [9, 10] 

 

𝐤𝐃
𝐁(𝜔) = [

𝑑1

𝑑2

𝑑4 
𝑑5

   

𝑑2

𝑑3

−𝑑5

   𝑑6

   

𝑑4

−𝑑5

𝑑1

−𝑑2

  𝑑5

     𝑑6

 −𝑑2

   𝑑3

]         (22) 

where 

 

−==+= /)(,/,/)( 13

2

22

3

31   hhhhh SCCSWdSSWdSCCSWd

                            (23) 

−=−=+−= /)(,/)(,/)( 16

2

25

3

34   SSWdCCWdSSWd hhh        (24) 

 

with 

𝑊1 =
𝐸𝐼

𝐿
;  𝑊2 =

𝐸𝐼

𝐿2 ;  𝑊3 =
𝐸𝐼

𝐿3 ; 𝜆 = √
𝜌𝐴𝜔2𝐿4

𝐸𝐼

4
           (25) 

 

 𝐶𝜆 = cos 𝜆 ; 𝑆𝜆 = sin 𝜆 ; 𝐶ℎ𝜆 = cosh 𝜆 ; 𝑆ℎ𝜆 = sinh 𝜆       (26) 

 

and  

 hCC−= 1                      (24) 

 

     Now the axial and bending dynamic stiffness matrices of Equations (19) and (22) 

can be combined using the notation of Figure 4 to give the 6×6 dynamic stiffness 

kD() of a beam which contains both the axial and bending components of the 

amplitudes of forces and displacements at each node so that it can be implemented to 

solve the free vibration problem of a plane frame. Thus, kD() is given by [10] 

 

𝐤𝐃(𝜔) =

[
 
 
 
 
 
𝑎1

0
0
𝑎2

0
0

0
𝑑1

𝑑2

0
𝑑4

𝑑5

0
𝑑2

𝑑3

0
−𝑑5

𝑑6

𝑎2

0
0
𝑎1

0
0

0
𝑑4

−𝑑5

0
𝑑1

−𝑑2

0
𝑑5

𝑑6

0
−𝑑2

𝑑3 ]
 
 
 
 
 

        (25) 
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     When analysing a framework for its free vibration characteristics, the above 

dynamic stiffness matrix of all individual beam elements in the frame must be 

assembled using the same procedure as FEM to form the overall dynamic stiffness 

matrix KD() of the complete frame. The transformation matrix, given by Equation 

(16) can be used to assemble the element dynamic stiffness matrices, noting that there 

is only one matrix for each individual element to transform from local to global 

coordinates rather than separate mass and stiffness matrices, as required in FEM. Once 

the overall dynamic stiffness matrix KD() is formed, the following eigenvalue 

problem is solved by using the Wittrick-Williams algorithm [7]. 

 

𝐊𝐃(𝜔)𝚫 = 0               (26) 

 

where  represents the amplitudes of the displacement vector of the frame. 

 

     The Wittrick-Williams algorithm [7], which has featured in literally hundreds of 

papers, is applied to Equation (26) to extract the natural frequencies of the frame to 

any desired accuracy. The computer implementation of the algorithm is simple and 

straightforward. Basically, the algorithm monitors the Sturm sequency property of the 

dynamic stiffness matrix and ascertains the natural frequencies of a structure with 

certainty, making sure that none of its natural frequencies is missed. The details of the 

Wittrick-Williams algorithm are not elaborated here because of its extensive coverage 

in the literature [11, 12].  

 

4  Results and discussion 
 

4.1. Free axial or longitudinal vibration of a cantilever beam 

 

     The first illustrative example is a uniform cantilever beam undergoing free axial 

or longitudinal vibration, by using a 2-element idealisation for FEM application, as 

shown in Figure 6. The axial rigidity of the beam in the usual notation is EA and its 

mass per unit length is A. Each of the two elements has a length L1 so that the total 

length L of the beam is 2L1. The nodes 1, 2 and 3 are numbered from the built-in end 

to the free end as shown. 

                      Y 

 

                                                      L 

 

                1                                      2                                    3 

                                                                                                             X 

 

 

                                   L1                                       L1 

 

Figure 6. Two-element idealisation of a beam element in axial vibration 
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     If only axial deformation is considered, i.e., by ignoring the bending displacement 

and bending rotation, the element mass and stiffness matrices of elements connecting 

nodes 1-2 and 2-3 can be assembled with the help of Equation (1) and then removing 

the row and column of the overall mass and stiffness matrices corresponding to the 

zero displacement at the built-in end (i.e., at node 1) to give: 

 

𝐌 =
𝜌𝐴𝐿1

6
[
4 1
1 2

] =
𝜌𝐴𝐿

12
[
4 1
1 2

]; 𝐊 =
𝐸𝐴

𝐿1
[
4 1
1 2

] =
2𝐸𝐴

𝐿
[
4 1
1 2

]      (27) 

 

     Now, formulating the eigenvalue problem yields the following determinantal 

(frequency) equation  

|𝐊 − 𝜔2𝐌|=0             (28) 

 

     Substituting K and M from Equation (27) into Equation (28) and expanding the 

determinant yield the following frequency equation: 

 

7𝜆2 − 10𝜆 + 1 = 0           (29) 

where 

𝜆 =
𝜌𝐴𝐿2𝜔2

24𝐸𝐴
              (30) 

 

     As the mass and stiffness matrices each have order 2×2, only two natural 

frequencies can be extracted from the 2-element FEM idealisation of the beam shown 

in Figure 6. As expected, the resulting frequency equation is quadratic, see Equation 

(29). 

 

     The two roots of  from Equation (29) with the help of Equation (30) yield the 

following two natural frequencies of the beam in axial or longitudinal vibration when 

using the 2-element idealisation of Figure 6.  

 

𝜔1 = 1.6114√
𝐸𝐴

𝜌𝐴𝐿2
;        𝜔2 = 5.6293√

𝐸𝐴

𝜌𝐴𝐿2
       (31) 

 

     Using DSM, which gives the same results as the classical approach of solving the 

governing differential equations, the above two frequencies are shown below: 

 

𝜔1 =
𝜋

2
√

𝐸𝐴

𝜌𝐴𝐿2 ≃ 1.5708√
𝐸𝐴

𝜌𝐴𝐿2;       𝜔2 =
3𝜋

2
√

𝐸𝐴

𝜌𝐴𝐿2 ≃ 4.7124√
𝐸𝐴

𝜌𝐴𝐿2      (32) 

 

     The errors in the FEM results for the above two frequencies are 2.58% and 19.46%, 

respectively. The error in the second natural frequency is much larger, as expected. 

 

     Clearly, no more than two natural frequencies can be extracted from the 2-element 

idealisation using FEM whereas the DSM does not need any further discretisation to 

improve the results because a single element in DSM is sufficient to determine any 

number of the natural frequencies of the beam to any desired accuracy. 
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     Table 1 shows the first 10 natural frequencies of the beam in free axial or 

longitudinal vibration in non-dimensional form, using the number of elements N as 2, 

4, 8 and 10 when using FEM together with the exact results obtained from DSM by 

using only one element (further verified by the classical theory of differential 

equation). As can be seen in Table 1, the first two natural frequencies of the beam can 

be predicted reasonably accurately using 4 or more elements in FEM, but the 

inaccuracy rapidly builds up when predicting the higher order natural frequencies. 

With 10 elements in FEM, the first five natural frequencies of the beam are within 

10% of the DSM results, but beyond the 5th natural frequency, the errors are above 

10%, e.g., the error in the 10th natural frequency is around 15%. The errors are 

expected to be still higher beyond the 10th natural frequency. When using the 

statistical energy analysis method [5, 6] which requires modal densities in the high 

frequency range, such errors may not be acceptable. 

 

Frequency 

Number (i) 

Natural frequency 𝜔𝑖√𝜌𝐴𝐿2/𝐸𝐴 

FEM results using N elements 
DSM results 

N=2 N=4 N=8  N=10 

1 1.6114 1.5809 1.5733 1.5724 1.5708 

2 5.6293 4.9872 4.7808 4.7561 4.7124 

3  9.0594 8.1719 8.0571 7.8540 

4  13.101 11.866 11.554 10.996 

5   15.946 15.320 14.137 

6   20.336 19.400 17.279 

7   24.533 23.754 20.420 

8   27.318 28.145 23.562 

9    31.986 26.704 

10    34.324 29.845 

Table 1. Natural frequencies of a beam in axial vibration using FEM and DSM 

 

4.2. Free flexural or bending vibration of a simply-supported beam 

 

     The next example is the simply supported beam shown in Figure 7 undergoing free 

bending or flexural vibration. The beam is idealised in FEM using only one-element 

connecting nodes 1 and 2.  

 

                                     Y 

 

                                                 

 

 

 Figure 7. One-element idealisation of a simply supported beam using FEM. 
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     Using the mass and stiffness matrices of a beam element given by Equation (8) and 

applying the boundary conditions of Figure 7, i.e. by deleting the rows and columns 

of the mass and stiffness matrices corresponding to zero displacements (X and Y) 

at each node, the following determinant of the frequency equation is obtained. 

|𝐊 − 𝜔2𝐌| = |
𝐸𝐼

𝐿3
[4𝐿2 2𝐿2

2𝐿2 4𝐿2] −
𝜔2𝜌𝐴𝐿

420
[ 4𝐿2 −3𝐿2

−3𝐿2 4𝐿2 ]| = 0     (33) 

or 

7𝜆2 − 44𝜆 + 12 = 0             (34) 

where  

𝜆 =
𝜌𝐴𝐿4𝜔2

420𝐸𝐼
                (35) 

Equation (34) gives  

𝜆1 =
2

7
;         𝜆2 = 6              (36) 

     Substituting 1 and 2 from Equation (36) into Equation (35) yields 

𝜔1 = 10.954√
𝐸𝐼

𝜌𝐴𝐿4
;      𝜔2 = 50.200√

𝐸𝐼

𝜌𝐴𝐿4
      (37) 

     The exact expression for the nth natural frequency n of a simply-supported beam 

is available in the following closed analytical form [9]. 

𝜔𝑛 = (𝑛𝜋)2√
𝐸𝐼

𝜌𝐴𝐿4              (38) 

     The errors in the two natural frequencies using FEM based on one-element 

idealisation are around 11% and 27%, respectively. Of course, the errors will diminish 

with increasing number of elements (N) used in FEM. Table 2 shows the first ten 

natural frequencies of a simply-supported beam using 2, 4, 8 and 10 elements 

alongside the exact results obtained by DSM with one element. Large errors in FEM 

analysis when computing higher natural frequencies with fewer elements are evident. 

 

Frequency 

Number (i) 

Natural frequency 𝜔𝑖√𝜌𝐴𝐿4/𝐸𝐼 

FEM results using N elements 
DSM results 

N=2 N=4 N=8  N=10 

1 9.9086 9.8722 9.8698 9.8697 9.8696 

2 43.818 39.634 39.489 39.483 39.478 

3 110.14 90.450 88.941 88.874 88.826 

4 200.80 175.27 158.54 158.18 157.91 

5  278.59 249.03 247.71 246.74 

6  440.56 361.80 358.13 355.31 

7  660.02 498.67 490.47 483.61 

8  803.19 701.08 646.21 631.65 

9   872.87. 826.48 799.44 

10   1114.4 1095.4 986.96 

Table 2. Natural frequencies of a simply supported beam in flexural vibration using 

FEM and DSM 
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4.3. Free vibration of a plane frame 

 

The final set of results was obtained for a plane frame with its geometrical dimensions 

shown in Figure 8, by using both FEM and DSM. In the DSM analysis, each member 

of the frame was a single beam element so that altogether 13 elements are used 

whereas in the FEM analysis, two models, namely Model A and Model B were used. 

Model A is treated in the same way as DSM, i.e. each member of the frame is a single 

beam element, but in Model B, each member of the frame was split into two beam 

elements of equal length so that altogether 26 elements are used. The properties of 

each beam element in the frame are EA= 8×108 N, EI= 4×106 Nm2, A= 30 kg/m.  

 

 
Figure 8. A plane frame for free vibration analysis using FEM and DSM. 

     The first five natural frequencies of the frame shown in Figure 8 were computed 

using DSM, and using Model-A and Model-B of FEM and the results are shown in 

Table 3 with the percentage errors shown in parenthesis. 

 

Natural  

frequency 

 (rad/s) 

FEM Results (rad/s) DSM 

Results 

(rad/s) 

Model-A result (%error) Model-B result (%error) 

1 267.39 (18.97%) 226.47 (0.76%) 224.76 

 330.70 (34.60%) 248.07 (0.97%) 245.69 

3 336.06 (25.69%) 270.11 (1.02%) 267.38 

4 389.32 (20.57%) 325.34 (0.75%) 322.92 

5 413.24 (21.94%) 341.71 (0.84%) 338.88 

Table 3. Natural frequencies of a frame using FEM and DSM 

 

     Clearly, Model-A, in which each member of the frame was modelled as a single 

beam in the FEM analysis, gives large errors in all the natural frequencies when 

compared to DSM results, but by doubling the number of elements in the FEM 

analysis, the errors can be reduced to around 1%. 
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4  Conclusions  
 

The accuracy and reliability of the finite element method (FEM) in free vibration 

analysis of beams and frames are assessed by using the dynamic stiffness method. 

Representative results are given for individual beams and a framework. Errors in FEM 

analysis, particularly in the high frequency range, are evident. This can be a 

disadvantage when applying FEM to the statistical energy analysis method which 

requires accurate and reliable modal analysis in the high frequency range. Similar 

analyses can be carried out on complex structures comprising beams, plates, and 

shells. 
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