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Abstract 
 

Equivalent single layer (ESL) theories have been extensively used in the analysis of 

plates. One of the common assumptions that are considered in all the ESL theories is 

that the thickness is small as compared to the in-plane dimensions. This assumption 

is the basis for converting a 3D plate problem into a 2D plate problem by assuming a 

displacement-model along the thickness. Higher-order shear deformation theories 

(hosts) consider more realistic non-linear variation of displacements along the 

thickness as compared to the other ESL theories i.e., the classical plate theory (CPT) 

and first-order shear deformation theories (FOSTS), which consider the linear 

variation. Due to this reason the solutions obtained using hosts are closer to the 

elasticity solutions. In this paper, static solution of the laminated composite plates is 

provided using 12 degrees of freedom higher-order shear and normal deformation 

theory (HOSNT). Results are obtained using the state-space approach for Lévy-type 

plates i.e., two opposite plate edges having simply-supported boundary condition 

and other two plate edges having combination of simply-supported, clamped and 

free boundary conditions. Results obtained compare well with the corresponding 

results available in the literature. 
 

Keywords: higher-order shear and normal deformation theory, Levy's solution, 

laminated plates, state-space technique, numerical solution, semi-analytical. 
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1  Introduction 
 

Composite materials are increasingly replacing conventional materials due to their 

excellent engineering properties. However, they exhibit a complex structural 

response, with local failures originating along weak planes and progressing until 

structural failure occurs. One such weak plane exists at the interface between 

adjacent layers in layered components, where delamination can initiate due to high 

inter-laminar shear and normal stresses. Therefore, it is crucial to study and evaluate 

inter-laminar stresses for accurate prediction of potential delamination. Various 

researchers globally have proposed several plate theories to investigate the behavior 

of composite materials. These theories can be broadly classified into ESL, zig-zag, 

and layer-wise theories. ESL theories aim to simplify the complex 3D problem into 

a more feasible 2D problem by making specific assumptions. Among the notable 

ESL theories are the CPT, FOSTS and higher-order shear deformation theories 

(hosts). These theories are extensively employed to analyze the response of 

composite materials and play a vital role in comprehending their characteristics. 

The 3D elasticity solutions are termed as the exact solutions, and they are used as 

the reference to validate the corresponding numerical results from different other 

techniques. Srinivas et al. [1,2] developed a linear, three-dimensional elasticity and 

small deformation exact solution technique for thick rectangular plates. Pagano [3–

5] developed an elasticity solution for cross-ply laminated and sandwich plates. The 

solution is presented for cylindrical bending of long rectangular plate and finite 

rectangular plate subjected to bi-directional sinusoidal loading. The simpler ESL 

theories are required due to the limitations of elasticity theories being able to solve 

for specific cases of material and boundary conditions. The CPT disregards 

transverse shear effects, leading to underestimation of displacements and 

overestimation of buckling loads in moderately thick and thick plates. The FOSTS 

introduced by Reissner [6] and Mindlin [7] address this drawback by considering 

shear deformation effects, providing more accurate results for moderately thick 

plates. However, the limitations of the CPT and the fost restricted it to calculate the 

crucial transverse shear stress values. Hence, another class of ESL theories known as 

hosts were developed. They assume a more realistic non-linear variation of 

displacements across the thickness. Kant [8] had proposed a refined higher-order 

theory having 6 degrees of freedom for symmetric plates. A remarkably popular 

third-order shear deformation theory was developed by Reddy [9] and parallelly by 

Levinson [10] and Murthy [11]. Kant and Swaminathan [12]–[14] performed 

extensive study using higher-order theories with different degrees of freedom using 

Navier’s approach. 

Flexure analysis of the laminated composite plates using 12 degrees of freedom 

HOSNT, has been the primary aim of the present work. The solutions for Lévy-type 

plates using HOSNT will be attempted first time and hence will be the novelty of the 

paper.   
 

2  Problem Formulation 
 

A laminated plate consisting of a number of isotropic/orthotropic lamina is 

considered. The length, width, and thickness of the rectangular plate are considered 
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as 𝑎, 𝑏 and ℎ, respectively, along with a right-handed cartesian coordinate system 

(𝑥 − 𝑦 − 𝑧) as shown in Fig. 1. Both the lamina and the laminate are assumed to 

have a constant thickness. The fibre orientation angle 𝜃 is measured in anti-

clockwise direction from 𝑥-axis. 

 

 

 

 

 

 

 

 

Figure 1: Geometry of plate, positive reference axes for laminate and fibre 

orientation. 

 

 

 

 

 

The displacement field for the HOSNT that is used in the present analysis is defined 

in Eq. (1). 
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Using the linear strain-displacement and three-dimensional constitutive relationship, 

the governing differential equations (gde) are derived by applying the minimization 

potential energy principle i.e., the variation of the total potential energy of the plate 
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must be zero (𝛿Π = 0). The 12 governing differential equations obtained are given 

in Eq. (2). 
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Simultaneously, along with the gde the derivation also produces the natural 

boundary conditions, which are mentioned as below. It is necessary to prescribe one 

of each of the following 24 products along the edges of the plate to meet the 

boundary conditions. 
* * * * * * * * * * * *

0 0 0 0 0 0, , , , , , , , , , , for 0 and xy xy y y y y x xy x xy y y y y z y z yu N u N v N v N w Q w Q M M M M S S x x a      = =

 
* * * * * * * * * * * *

0 0 0 0 0 0, , , , , , , , , , , for 0 and x x xy xy x x x x x x y xy y xy z x z xu N u N v N v N w Q w Q M M M M S S y y b      = =

 

Taking cue from the above BCs, the commonly occurring boundary conditions for 

different cases of Lévy-type plates are given as follows, 

 

The Simply-Supported (S) boundary conditions at edges 𝑦 = 0 and 𝑦 = 𝑏 are, 
* * * * * *

0 0 0 0 0.x x z z y y y yu u w w M M N N   = = = = = = = = = = = =  

 

While the boundary conditions for the remaining two edges 𝑥 = 0 and 𝑥 = 𝑎 will 

be,  

 

Simply-Supported (S):  

 
* * * * * *

0 0 0 0 0.y y z z x x x xv v w w M M N N   = = = = = = = = = = = =  

Clamped (C): 
* * * * * *

0 0 0 0 0 0 0.x x y y z zu u v v w w      = = = = = = = = = = = =  

Free (F): 
* * * * * * 0.x x xy xy x x xy xy x x x xN N N N M M M M Q Q S S= = = = = = = = = = = =  
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Using this kinematics of HOSNT the solution procedure is developed to solve the 

partial gde.  
 

3  Solution Procedure 
 

For the flexural analysis of orthotropic and cross-ply laminated, the Lévy-type 

solution is employed in conjunction with the state-space technique. The procedure 

starts with assuming the primary unknowns in the form of single-term trigonometric 

Fourier series. This reduces the two-dimensional problem into a one-dimensional 

boundary value problem (bvp) in 𝑥-coordinate. The resulting bvp as shown in Eq. 

(3) is then solved using the state-space approach [15]. 
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The solution for the bvp in Eq. (3) can be obtained using the following expression.  

 
  

     

1

24

1 [ ]( )

0

0

( ) [ ] [ ] d

0

0

D x

x

T x

D x

e

Z x V V Z e F

e








=

− −

=

 
 

= + 
 
 

  (4) 

where, 𝐷𝑖  (𝑖 = 1 to 24) are the distinct eigenvalues of [𝑇] and, [𝑉] and [𝑉]−1 are 

the matrices of corresponding eigenvectors and their inverse, respectively. The 

constant vector {𝑃} = [𝑉]−1{𝑍0} in Eq. (4) is calculated using the boundary 

conditions at 𝑥 = 0 and 𝑥 = 𝑎. Note that it is crucial to use vector {𝑃} (Eq. (4)) as 

the matrix [𝑉]−1 is an ill-conditioned matrix and hence give erroneous solutions if 

left untreated. 
 

Using the solution procedure, the numerical results for various cases are presented in 

the next section. 
 

4  Numerical Results and Discussions 
 

The computer codes incorporating the methodology explained in previous section is 

developed in the MATLAB coding language. Numerical examples pertaining to the 

flexure analysis of the laminated cross-ply plates using HOSNT are presented in this 

section. 

 

To prove the efficacy of the present theory and methodology the square three-

layered symmetric cross-ply laminated (0/90/0) plate with all the edges having 

simply-supported boundary condition (SSSS) is analysed. The results are compared 

with the corresponding results available from different literatures.  

 

The material property used for the analysis and the normalization scheme adopted 

for the result comparison are given in Table 1 and Eq. (5), respectively. 
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Table 1: Material Properties 

Source Elastic constants 

Pagano [3] 
𝐸1 = 25𝐸2 

𝐸2 = 𝐸3 = 106 psi 

𝜈12 = 0.25 
𝜈13 = 0.25 
𝜈23 = 0.25 

𝐺12 = 𝐺13

= 0.50𝐸2 
𝐺23 = 0.20𝐸2 

 

It can be seen from Table 2 and Table 3 that the results from the present analysis are 

in good agreement with the corresponding results from elasticity solutions. 

Comparing other ESL theories with the elasticity solutions shows that while HSDT-

R is giving considerable good results, the other two theories, i.e., HSDT-S and 

FSDT have relatively significant errors. It can be confidently concluded that the 

results obtained from HOSNT are not only in good agreement but also somewhat 

more in proximity with the exact elasticity solutions compared to the results from 

other ESL theories. 
 

Table 2: Normalized displacement and in-plane stresses (�̅�, �̅�𝑥 , �̅�𝑦) for different length-to-

thickness ratio (𝑎/ℎ) of a square three-layered cross-ply (0/90/0) laminated SSSS plate. 

a/h Source �̅� (
𝑎

2
,
𝑏

2
; 0) 𝜎𝑥 (

𝑎

2
,
𝑏

2
;
ℎ

2
) 𝜎𝑦 (

𝑎

2
,
𝑏

2
;
ℎ

6
) 

10 
 

ΩElasticity Sol.SL - -0.5900 -0.2880 
PresentSL 0.7151 -0.5832 -0.2732 
%Error - -1.15% -5.14% 
RHSDT-R 0.7125 -0.5684 -0.2690 
%Error - -3.66% -6.60% 
SHSDT-S 0.6041 -0.5747 -0.1649 
%Error - -2.59% -42.74% 
MFSDT 0.6693 -0.5134 -0.2536 
%Error - -12.98% -11.94% 

50 

ΩElasticity Sol.SL - -0.5410 -0.1850 

PresentSL 0.4432 -0.5406 -0.1838 

%Error - -0.07% -0.65% 
RHSDT-R 0.4430 -0.5399 -0.1836 

%Error - -0.20% -0.76% 
SHSDT-S 0.4382 -0.5401 -0.1790 

%Error - -0.17% -3.24% 
MFSDT 0.4411 -0.448 -0.1829 

%Error - -17.19% -1.14% 
Source Ref.: $ Pendhari et al. [16,17];  ΩPagano [3]; RReddy [9,12]; SSenthilnathan et al. [12,18]; MReddy et al. 

[12,19] 
SLBi-directional sinusoidal loading 

Numbers in % are the percentage error w.r.t elasticity solutions. 



 

7 

 

Table 3: Normalized in-plane and transverse shear stresses (�̅�𝑥𝑦, �̅�𝑥𝑧 , �̅�𝑦𝑧) for different 

length-to-thickness ratio (𝑎/ℎ) of a square three-layered cross-ply (0/90/0) laminated SSSS 

plate. 

a/h Source 𝜏�̅�𝑦 (0,0;
ℎ

2
) 𝜏�̅�𝑧 (0,

𝑏

2
; 0)

𝐸

 𝜏�̅�𝑧 (
𝑎

2
, 0; 0)

𝐸

 

10 

ΩElasticity Sol.SL -0.0290 0.3570 0.1228 
PresentSL -0.0279 0.3660 0.1180 
%Error -3.79% 2.52% -3.91% 
RHSDT-R -0.0277 - 0.1167 
%Error -4.48% - -4.97% 
SHSDT-S -0.0227 - - 
%Error -21.72% - - 
MFSDT -0.0252 - 0.1108 
%Error -13.10% - -9.77% 

50 

ΩElasticity Sol.SL -0.0216 0.3930 0.0842 

PresentSL -0.0216 0.3930 0.0842 

%Error 0.00% 0.00% 0.00% 
RHSDT-R -0.0216 - - 

%Error 0.00% - - 
SHSDT-S -0.0213 - - 

%Error -1.39% - - 
MFSDT -0.0215 - - 

%Error -0.46% - - 
Source Ref.: $ Pendhari et al. [16,17];  ΩPagano [3]; RReddy [9,12]; SSenthilnathan et al. [12,18]; MReddy et al. 

[12,19] 
SLBi-directional sinusoidal loading 
EResults obtained through Equilibrium equations using Navier’s technique (Ref. [12]). 

Numbers in % are the percentage error w.r.t elasticity solutions. 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 
 

Variation of normalised transverse displacement (�̅�) along the thickness of the 

plates are shown in Figure 2 for the cross-ply case. The cubic/non-linear variation of 

�̅� due to the displacement model for present theory can very well be seen in the 

figure.  
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Figure 2: Variation of the ratio of normalised transverse displacement with respective 

midplane displacement �̅� (
𝑎

2
,

𝑏

2
; 𝑧) �̅� (

𝑎

2
,

𝑏

2
; 0)⁄  for cross-ply (0/90/0) laminated plate 

(𝑎/ℎ = 10). 

 

 

Effect of plate length-to-thickness ratio (𝑎/ℎ) on the values of normalised 

transverse displacement is presented in Figure . This reduction of values of 

normalised transverse displacement with the increase in the values of 𝑎/ℎ is because 

of shear deformation effect which is more prominent in thick plates as compared to 

thin plates. 

 
Figure 3: Effect of plate length-to-thickness ratio (𝑎/ℎ) on the normalised transverse 

displacement (�̅�) for cross-ply (0/90/0) laminated plate. 

 

Effect of plate length-to-width ratio (𝑎/𝑏) on the values of normalised transverse 

displacement is presented in Figure 4. The reduction in the values of normalised 
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transverse displacement and in-plane normal stresses with the increase in the values 

of 𝑎/𝑏 is due to the eventual increase in the values of 𝑎/ℎ i.e., the slenderness 

effect.  

 
Figure 4: Effect of plate aspect ratio (𝑎/𝑏) on the normalised transverse displacement (�̅�) 

for cross-ply (0/90/0) laminated plate (𝑏/ℎ = 10). 

 

5. Conclusion 
 

The study of flexure analysis using 12 DOF higher-order shear and normal 

deformation theory has been presented. The novelty involved using the Lévy-type 

plates in conjunction with the state-space numerical technique for HOSNT. The 

results from the present theory were in better quantitative agreement with the exact 

elasticity solutions as compared to the other ESL theories. The parametric study 

performed can serve as the benchmark solutions for the future references. It can be 

concluded that the higher number of primary unknowns (up to cubic) can improve 

the accuracy of the results with limitation of increased computational cost.  

 

References 
 

 

[1] S. Srinivas, A.K. Rao, C.V.J. Rao, "Flexure of Simply Supported Thick 

Homogeneous and Laminated Rectangular Plates", ZAMM - Journal of 

Applied Mathematics and Mechanics / Zeitschrift Für Angewandte 

Mathematik Und Mechanik 1969; 49:449–58.  

  https://doi.org/10.1002/zamm.19690490802. 

[2] S. Srinivas, C.V.J. Rao, A.K. Rao, "An exact analysis for vibration of 

simply-supported homogeneous and laminated thick rectangular plates", 

Journal of Sound and Vibration 1970;12:187–99. 

https://doi.org/10.1016/0022-460X(70)90089-1. 

[3] N.J. Pagano, "Exact Solutions for Rectangular Bidirectional Composites and 



 

10 

 

Sandwich Plates", Journal of Composite Materials 1970;4:20–34. 

https://doi.org/10.1177/002199837000400102. 

[4] N. J. Pagano, "Exact Solutions for Composite Laminates in Cylindrical 

Bending", Journal of Composite Materials 1969;3:398–411. 

https://doi.org/10.1177/002199836900300304. 

[5] N.J. Pagano, "Influence of Shear Coupling in Cylindrical. Bending of 

Anisotropic Laminates",    Journal of Composite Materials 1970;4:330–

43.https://doi.org/10.1177/002199837000400305. 

[6] E. Reissner, "The Effect of Transverse Shear Deformation on the Bending of 

Elastic Plates", J Appl Mech 1945:A69–77. 

[7] R.D. Mindlin, " Influence of Rotatory Inertia and Shear on Flexural Motions 

of Isotropic, Elastic Plates", The Collected Papers of Raymond D Mindlin 

Volume I 1989;18:225–32. https://doi.org/10.1007/978-1-4613-8865-4_29. 

[8] T. Kant, "Numerical Analysis of Thick Plates", Computer Methods in 

Applied Mechanics and Engineering 1982;31:1–18. 

https://doi.org/10.1016/0045-7825(82)90043-3. 

[9] J. N. Reddy, "A Simple Higher-Order Theory for Laminated Composite 

Plates", Journal of Applied Mechanics 1984;51:745–52. 

https://doi.org/10.1115/1.3167719. 

[10] M. Levinson M, "An Accurate, Simple Theory of the Statics and Dynamics 

of Elastic Plates", Mechanics Research Communications 1980;7:343–

50.https://doi.org/10.1016/0093-6413(80)90049-X. 

[11] M.V.V. Murthy, "An Improved Transverse Shear Deformation Theory for 

Laminated Antisotropic Plates", 1981. 

[12] T. Kant, K. Swaminathan, "Analytical Solutions for the Static Analysis of 

Laminated Composite and Sandwich Plates based on a Higher Order 

Refined Theory", Composite Structures 2002;56:329–44. 

https://doi.org/10.1016/S0263-8223(02)00017-X. 

[13] Kant T, Swaminathan K. Analytical solutions for Free Vibration of 

Laminated Composite and Sandwich Plates based on a Higher Order 

Refined Theory", Composite Structures 2001;53:73–85. 

https://doi.org/10.1016/S0263-8223(00)00180-X. 

[14] T. Kant, K. Swaminathan, "Analytical Solutions using a Higher Order 

Refined Theory for the Stability Analysis of Laminated Composite and 

Sandwich Plates", Structural Engineering & Mechanics 2000;10:337–57. 

[15] H. T. Thai, S. E. Kim, "Analytical Solution of a Two Variable Refined Plate 

Theory for Bending Analysis of Orthotropic Levy-type Plates",  

International Journal of Mechanical Sciences 2012;54:269–76. 

https://doi.org/10.1016/j.ijmecsci.2011.11.007. 

[16] S. S. Pendhari, "A New Partial Discretization Technique in Elastostatics 



 

11 

 

with Special Reference to Laminated Composites and Sandwiches", 

Doctoral dissertation. Indian Institute of Technology Bombay, 2006. 

[17] T. Kant, A. B. Gupta, S. S. Pendhari, Y. M. Desai, "Elasticity Solution for 

Cross-ply Composite and Sandwich Laminates", Composite Structures 

2008;83:13–24.      https://doi.org/10.1016/j.compstruct.2007.03.003. 

[18] N. R. Senthilnathan, S. P. Lim, K. H.  Lee, S. T. Chow, "Buckling of Shear-

Deformable Plates", AIAA Journal 1987;25:1268–71. 

https://doi.org/10.2514/3.48742. 

[19] J. N. Reddy, W. C. Chao, " A Comparison of Closed-form and Finite-

element Solutions of Thick Laminated Anisotropic Rectangular Plates", 

Nuclear Engineering and Design 1981;64:153–67. 

https://doi.org/10.1016/0029-5493(81)90001-7. 

 




