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Abstract

This study addresses model objectivity and consistency in the finite element analysis
of reinforced concrete (RC) beams, with a particular focus on bond-slip effects. Clas-
sical beam finite element models often assume a perfect bond between concrete and
steel reinforcement, leading to inaccuracies in simulating crack initiation and propa-
gation. The behaviors of both displacement-based (DB) and force-based (FB) beam
models are explored. Fracture energy-based regularization techniques are used to ad-
dress mesh dependency and the limitations of the plane section assumption. The paper
presents a detailed analysis of perfect-bond and bond-slip models within the DB and
FB frameworks, highlighting their effectiveness in capturing the complex interactions
in RC structures. Through practical applications and test cases, the performances of
the above models are investigated, emphasizing the importance of upgrading exist-
ing models and their capability to predict structural behavior in presence of cracking



phenomena. Possible enhancements for these models, including higher-order shape
functions and advanced numerical integration techniques are discussed. While the
problem of localization in compression (crushing) has been extensively studied and
solutions have been developed, this work specifically focuses on the localization that
occurs at the onset of cracking.

Keywords: beam elements, fiber modeling, bond-slip, concrete damage plasticity,
reinforced concrete, regularization.

1 Introduction

Beam finite elements are essential tools in the structural analysis of reinforced con-
crete (RC) beams. Despite numerous advancements, classical beam models still face
challenges in accurately representing some critical phenomena, such as bond-slip in-
teraction and cracking [1, 2]. This paper addresses these limitations by exploring
numerical issues when using standard finite element models, with a focus on bond-
slip effects. Beam finite element models have evolved significantly, with two main
formulations forming the basis of their development: displacement-based (DB) and
force-based (FB) approaches.

DB models approximate the displacement fields within the element, and derive
the stiffness matrix from the derivatives of the displacement shape functions. These
models are widely used due to their simplicity and ease of implementation. However,
the assumed displacement fields become highly approximated and lead to inaccurate
solutions when severe nonlinearities develop, thus requiring fine meshes to improve
numerical results. There may also be numerical instability and convergence issues,
especially when dealing with large deformations or complex loading conditions [3].

In contrast, FB models assume exact internal forces in classical Euler-Bernoulli
and Timoshenko beam elements, ensuring force equilibrium at each computational
step. An involved FE implementation procedure is however needed to implement
FB models in general purpose FE codes as the element naturally derives flexibility
rather than stiffness matrix. The approach allows capturing the nonlinear behavior and
complex loading scenarios often using a single beam model per structural member,
making it highly effective for detailed nonlinear structural analyses [4, 5, 6].

Both DB and FB models are frequently coupled with fiber section models that ac-
curately describe the bidirectional PMM (axial force-moment-curvature) interaction.
The selection of appropriate material laws is crucial for achieving accurate analyses.
Enhancements in both DB and FB formulations have been developed over the years to
improve their accuracy and computational efficiency. These include the use of higher-
order shape functions, advanced numerical integration techniques, and refined mate-
rial models that better capture the nonlinear characteristics of RC structures. Address-
ing mesh dependency in finite element analysis, particularly in scenarios involving
material softening such as concrete cracking and crushing is critical. Regularization



techniques, such as nonlocal damage models and gradient-enhanced formulations, are
crucial in ensuring that numerical results are objective and mesh-independent, espe-
cially when localized damage or fracture occurs [7, 6, 8, 9].

Advancements in beam finite element models have also included enhanced section
kinematics. Traditional beam models assume the hypothesis that plane sections re-
main plane. Although this assumption is the most commonly used, it restricts the
model’s ability to simulate complex deformation patterns accurately under Euler-
Bernoulli assumptions. However, this rigid plane section assumption is often inade-
quate for specific applications. For instance, thin-walled beams can exhibit significant
warping and distortions [10]. Deep beams and those under torsional loading often ex-
perience non-planar deformations and shear lag effects [11]. Curved beams or those
subjected to dynamic loading also fail to comply with the plane section hypothesis due
to complex deformation modes [12]. By incorporating enhanced kinematic descrip-
tions, and introducing warping deformation modes, these models can more accurately
represent the true behavior of RC beams under various loading conditions [13, 14].

Addessi et al. [13] developed enriched beam models that incorporate warping,
significantly improving the simulation of torsional and warping effects. This enhance-
ment is crucial for accurately capturing the detailed deformation patterns in RC beams,
particularly under scenarios involving cracking or discontinuities. The interaction be-
tween concrete and reinforcements in RC beams, particularly bond-slip behavior, is a
critical aspect that classical beam models often fail to capture accurately. The assump-
tion of a perfect bond between concrete and steel reinforcement can lead to significant
inaccuracies in predicting the structural response, especially in terms of crack initia-
tion and propagation [14].

To address these challenges, bond-slip can be considered in different ways within
both DB and FB frameworks. Explicit bond-slip models incorporate the bond-slip
relationship into the FE formulation explicitly detailing each element in a system of
frames and trusses. This approach provides a direct introduction at a global level of
the relative displacements between the concrete and steel reinforcement, by using a
force-slip spring. Implicit models incorporate bond-slip effects in the element for-
mulation, either through modified material models, boundary conditions, additional
degrees of freedom, or enhanced interpolations. These offer a practical solution for
including bond-slip effects without significantly increasing the number of elements
and therefore degrees of freedom [14, 15, 16, 17, 18]

Sio et al. [14] have extensively explored both explicit and implicit bond-slip mod-
els, demonstrating their effectiveness in capturing the interactions between reinforce-
ment and concrete. These models are pivotal for improving the accuracy of beam finite
element analyses, particularly in scenarios involving significant bond-slip phenomena.

This paper is structured to address the numerical challenges in beam finite element

formulations with a focus on bond-slip effects. The following sections are organized
as follows:

- Beam Finite Elements with Bond-Slip: This section introduces the various mod-
els used in this study, including classical beam elements with perfect-bond as-



sumptions and those incorporating bond-slip via the explicit modeling approach.

- Results: This section presents practical applications and test cases. It explores
bending tests on plain concrete and RC beams with perfect-bond and bond-slip
models, examining how these models perform under different conditions and
highlighting mesh-dependency issues.

The simulations are run in OpenSEES [19] and STKO [20] is used to process the
results.

2 Beam elements with bond-slip

The following section outlines the beam elements used in the numerical framework for
nonlinear structural analyses. These elements are based on the following assumptions:

- the study focuses on slender beams, under the Euler-Bernoulli beam theory.
This assumption helps emphasize objectivity issues, considering only flexural
failure in the analyses;

- all cases are analyzed within a two-dimensional framework, involving only re-
inforced concrete (RC) planar subsystems;

- a fiber section approach is used to model the generalized nonlinear constitutive
behavior of concrete at the section level;

- steel rebars are modeled using truss elements;

- rigid links and unidirectional springs are used to model the bond-slip behavior
between the concrete fiber section and the steel rebars;

- uniaxial constitutive laws describe both the concrete fibers and the steel trusses
response. Finally, a bond-slip relationship is assigned to the unidirectional
springs that represents the bond interface.

2.1 Beam models

This section describes the beam models used in the nonlinear structural analysis frame-
work. It focuses on perfect-bond models and their applications with the well-known
displacement based (DB) and force-based (FB) approaches. In the DB approach, dis-
placement shape functions are assumed along the element and the beam strains are
derived using from the displacement fields by the compatibility equations. Weak equi-
librium is imposed to find the element stiffness matrix and nodal forces. Conversely, in
the FB approach equilibrated force distributions are assumed along the element. Weak
compatibility yields the element flexibility matrix and nodal basic displacements. Nu-
merical procedures are used to implement FB elements in standard DB FE programs.

The nodal displacements in the element local reference system w; and their dual
forces p; are defined as shown in Fig. la:
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Figure 1: Beam element nodal displacements and forces in the (a) local and (b) basic reference
system.
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Two models are considered in this paper:
1. Perfect bond fiber-section models
2. Explicit bond-slip models

In the former, the steel rebars are discretized as fibers fully bonded to the concrete
fibers. In the latter, the steel rebars are modeled explicitly as truss elements connected
to the beam element through nonlinear nodal springs that allow relative displacements
and then a bond-slip relationship. Figs. 2 and 3 show the numerical setups that intro-
duce bond-slip between beam and truss elements.
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Figure 2: Explicit configuration of beam-with-bond model.
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Figure 3: Axial spring configuration in the local initial undeformed configuration.

2.2 Constitutive models

Three different constitutive laws are introduced for concrete, steel and bond-slip in-
terface, respectively.

The concrete model is based on the damage-plastic constitutive law proposed in
[21]. This is based on a Bezier interpolation scheme for the damage evolution and
a plasticity algorithm, and uses a parameter ranging from O to 1 which controls the
yielding region, where O corresponds to a Drucker-Prager criterion [22] and 1 corre-
sponds to a modified criterion presented in [23]. Another parameter ranging from 0
to 1 controls damage using different interpolation points in tension and compression
to allow for a non-symmetric response. The 1D unconfined version is used here. An
example of the cyclic behavior is shown in Fig. 4(a).

The steel model is based on Menegotto and Pinto [24], which allows for hardening

under a specified b parameter that allows to compute the hardening modulus as a
fraction of the Young’s modulus. An example is shown in Fig. 4(b).
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Figure 4: (a) Concrete and (b) steel uniaxial constitutive laws.

The model used for the bond-slip interface is proposed in [25] and implemented in
OpenSEES [19]. It is based on a four-points controlled piece-wise linear curve with a
return mapping algorithm that emulates a friction-like behavior. An example is shown
in Fig. 5.



Figure 5: Bond-slip interface constitutive law

2.3 Regularization technique

In attempting to obtain objective results in presence of strain-softening behavior, as
in case of reinforced concrete elements, regularization techniques are adopted. This
paper investigates the performance of fracture energy-based regularization methods,
as these are widely adopted due to their straightforward implementation. In this case,
the post-peak softening response is controlled by two different fracture energy param-
eters, labeled as (G; and G.. for tension and compression, respectively. A characteristic
length, [, is introduced, evaluated as the ratio of the length of the damaging zone,
and the mesh integration length [26]. Other possible local regularization techniques
are discussed in [6, 27, 28, 29] An example is shown in Figs. 6a and 6b where, where,
if [, equals one, the constitutive law is the actual experimental response expected for
a concrete specimen.
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Figure 6: (a) Tension and (b) compression fracture energy regularization.

3 Results

Since this work focuses on localization at the first cracking, bending tests are per-
formed. Numerical tests on the simple beam schematically shown in Fig. 7 and la-



beled beam J4 in [30] are carried out. Geometric and mechanical data are reported
in Table 1. For symmetry, only half of the beam is represented and the left end with
restrained rotation is the beam midspan.
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Figure 7: Schematic representation of beam J4.

Concrete Steel
E. [M Pa) 26200 Eg [MPa] 203395
fi [M Pal 2.4 o, [MPa] 309.65
fe [M Pal 3324 b 0.01
Gy [N/mm] 0.0875 A [mm?] 100 =+ 1000

Table 1: Geometric and mechanical parameters of beam J4.

3.1 Bending test on plain concrete beam

First, a fiber-section beam model is used to study the numerical response of the unre-
inforced beam. The beam is discretized using an increasing number of FEs ranging
from 10 to 320. In the first test, curvature and axial strain always localize in the first
element to the left of midspan, as it is the only one experiencing cracking. In Fig. 8,
on the left, the global response is shown for DB and FB elements. A Gauss-Lobatto
integration scheme, involving two quadrature points, is used here for both approaches,
requiring the FB elements to be regularized considering half mesh length i.e., by using
a double fracture energy amount. A similar behavior can here be observed for both
approaches, and it is clear that the peak point, that corresponds to the crack formation,
keeps moving until eventually, in the limit case labeled as ”infty” in Fig. 8(a), concrete
does not crack at all and responds as a ductile material. In Fig. 8(b) the fiber tensile
response shows the effect of the fracture energy regularization.

Fig. 9 shows the first section top (compression-left) and bottom (tension-right)
fibers’ strain evolution as the midspan displacement increases. The concrete com-
pression softening branch is never engaged here as concrete cracking leads to sudden
element failure and the descending response in compression in Fig. 9 represents stress
unloading. Peaks correspond to cracking stages. The two figures clearly show that the
fracture energy regularization performs poorly: the post-cracking softening curve is
indeed regularized but the overall response is still largely subject to numerical depen-
dencies. Convergence can be achieved when an infinite amount of fracture energy is
considered, but this represents a non-realistic case.
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Figure 8: Global response for DB and FB approaches (a) and lower fiber tensile stress vs strain

for DB elements (b) for a progressively increasing number of FEs.
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Figure 9: Compressed top fiber strain over global displacement for the DB case (left); tensile

3.2

fiber strain over global displacement (right).

Bending tests on reinforced concrete beam with perfect-bond
and with bond-slip

This section details the impact of the interaction between concrete and steel under the
assumptions of perfect bond and bond-slip. It is organized as follows:

response of fiber section with perfect-bond beam element;

response of concrete fiber section beam element plus rebars with bond-slip with
different reinforcement ratios and with different bond conditions (perfect-bond
and low-bond);

effect of the mesh refinements with variable reinforcement ratio;

effect of bond on explicit models;

non-regularized case for explicit models.

In this section, only results on DB elements are shown since similar outcomes are
also expected for FB elements, as shown in Section 3.1 where a plain concrete section
is tested. The response of a classical fiber beam with perfect bond is studied first.



A specimen with very little reinforcement ratio p is analyzed (p = A;/A. = 0.1%,
where A, is the steel area and A, is the concrete section gross area). The mesh is
progressively refined, and the response is studied with and without regularization. The
aim is to highlight the softening branch after first cracking and display the different
behaviors. Fig. 10(a) clearly highlights the effects of the tension fracture energy
regularization: the softening branches show similar trends but start at different peak
stages. This is clearly shown by the steel response, which yields at different stages for
each mesh. Without regularization (Fig. 10(b)), both peaks and softening trends are
completely different, as for non-regularized cases, a pathological mesh dependency is
expected.
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Figure 10: Global responses considering a low amount of steel, equal to p = 0.1%, for (a)
non-regularized FE model and (b) fracture energy regularized FE model.

The effect of bond is investigated in Fig. 11 for a medium amount of reinforcement
p = 0.5%. The mesh is discretized with 10 regularized FEs. When the bond is
relatively poor, the overall contribution of steel is low and only one crack is formed.
When the maximum bond stress is 7,4, > 1 MPa, more cracks are formed along the
beam at an increasing density as the bond intensity improves.

Three different steel reinforcement ratios are used in Fig. 12, p = 0.1%, p = 0.5%
and p = 1.0%. Both perfect-bond and low-bond cases are represented employing
explicit modeling: in both cases only one crack at the midspan forms, and the response
is overestimated with respect to the experimental case.

By assuming a realistic bond-slip law, as in this case where 7,,,, = 2 MPa, results
are non-objective as the mesh changes. Fig. 13 shows that, for three reinforcement
ratios and for numbers of FEs from 10 to 1280, the global response does not regularize
and convergence is not achieved at the cracking stage.

Fig. 14 shows the evolution of the steel strain for all the considered cases. Although
it eventually converges in the hardening stage for highly refined meshes, the yielding
strain is different for every case.

Fig. 15 shows the displacement at which the second crack forms (left) and the
distance between the first two cracks. The left diagram shows no sign of convergence,
and no cracks are observed, in a concentrated sense, for more than 80 FEs. The

10
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Figure 11: Global response with p = 0.5% with variable bond strength using 10 elements for
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Figure 12: Global response with variable amount of reinforcement ratio p using 40 elements
to discretize the beam. Experimental comparisons (ref) are reported for perfect-
(PB) and low-bond (LB) as a comparison.

right diagram shows that a general correspondence between analytic and numerical
results is achieved at 40-80 elements, but there is no overall objectivity. Fig. 16
shows how the steel reinforcement responds in various cases: while the post-yielding
steel strain eventually stabilizes for a high number of FEs, the yielding strain occurs
at different midspan displacements, which might still differ from the infinite fracture
energy limit case. Curvatures and fiber stress for the first three meshes are reported in
Fig. 17. Curvature peaks indicate that a crack has opened in that region. Fig. 17(a,b,c)
correspond to a lower reinforcement ratio, therefore a lower interaction area and poor
bond, while Fig. 17(d,e,f) correspond to a higher reinforcement ratio.

In addition, tests without regularization were intentionally carried out for the p =
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Figure 15: Steel behavior for different reinforcement ratios: (left) steel strain in midspan sec-
tion at specified displacements and (right) midspan displacement at steel yielding.

0.5% case. As shown in Fig. 18, the resulting curves are quite regular. This regularity
arises because, even with the initial mesh, the softening behavior is very stiff due to
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Figure 17: Curvature (top) and fiber stress (bottom) distributions for three meshes and two
reinforcement ratios in the pre-yielding stage.

the low tensile fracture energy of concrete. Consequently, there are minimal changes
observed as the mesh refines. When examining the curvature distributions, which in-
dicate the cracks’ locations, similar patterns emerge across all meshes. This similarity
is especially apparent in the finer meshes. However, an unrealistic issue arises: the
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Figure 18: Global structural response for the model without regularization for p = 0.5% (left)
and curvatures (right) for different meshes.

curvature tends to spread across adjacent elements. This spread suggests that cracks
are diffused, which is not representative of the mechanical behavior of concrete. Thus,
this model also fails to accurately capture the expected localized cracking.

4 Concluding remarks

The paper investigates model objectivity and consistency related to strain localiza-
tion of beam finite element models considering reinforcement that is perfectly bonded
or with allowed slip. It is shown that that traditional perfect-bond assumptions can
lead to significant inaccuracies, especially in scenarios involving complex loading and
crack propagation. Bond-slip models better describe the interactions between concrete
and steel reinforcement, although local regularization techniques, such as the fracture
energy method, fail to correctly address mesh dependency and realistically capture
localized damage. Possible advancements, including higher-order formulations and
expanded kinematics as those proposed in [14] are under investigation to obtain more
robust and objective structural analyses. Future work should continue to refine these
models and explore their applications in diverse structural scenarios, reducing the gap
between numerical simulations and real-world behaviors of RC structures.
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