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Abstract

We consider frictionless contact between an elastic rod and a flexible sleeve. The
rod is partially inserted into the sleeve, thus building a compound rod with piece-
wise constant bending stiffness and moving boundaries between the three segments:
both the rod and the sleeve contribute to the bending stiffness in the overlapping seg-
ment. The intrinsic (natural) curvatures of the rod and the sleeve act as as load factors,
resulting into bending, relative sliding and change of length of the segments. Con-
centrated contact interactions (configurational forces) at the transition points repel the
rod and the sleeve from each other, eventually causing full ejection when the intrin-
sic curvatures exceed a threshold. To investigate this behavior, we apply a problem
specific non-material finite element discretization of each segment of the elastic struc-
ture. Static equilibria are sought by augmenting the set of nodal degrees of freedom
with the unknown configurational parameter, which determines sliding motion. After
demonstrating the mesh convergence of the computational model, we investigate the
parameter space and seek domains of existence of equilibria with non-vanishing over-
lapping segment. The parameter space includes the intrinsic curvatures of the rod and
of the sleeve and also the initial length of the overlapping segment.

Keywords: nonlinear rods, sliding rods, stability, Hermite finite elements, non-material
kinematic description, ALE
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1 Introduction

Increasing practical demands and progress of novel problem specific simulation tech-
niques promote the interest of researchers in modelling the dynamics and quasi-static
behavior of axially moving structures, see review paper [1]. Moving transmission and
transport belts, squealing brakes, band saws and elevator cables are examples of such
structures. Systems featuring sliding rods represent a sub-class of axially moving
structures, which is intensively investigated in the recent years both from the theo-
retical perspective as well as from the point of view of numerical simulations. The
interesting problem of the elastica arm scale, in which a flexible rod is balanced in
an inclined frictionless sleeve by configurational forces acting at the transition points
was investigated theoretically and experimentally by Bosi et al. [2]; see also the anal-
ysis presented by O’Reilly [3]. The dynamic ”sliding spaghetti” problem of a moving
rod, partially inserted into a rigid sleeve was studied by Boyer et al. [4] as well es by
Humer with co-authors [5–7]. When the motion within the sleeve is not kinematically
prescribed but rather results from the overall dynamics of the flexible rod problem
with moving boundaries, the configurational forces begin playing an important role as
is visible in the surprising phenomenon of the ”dancing rod”, first demonstrated exper-
imentally by Armanini et al. [8] and later analyzed numerically by Han and Bauchau
in [9]. For the treatment of a spatial problem of rotation transmission by a rod with
initial curvature in a curved channel we refer to [10].

The present contribution extends the spectrum of sliding rod problems by consid-
ering the case of a flexible sleeve with concentric tube robots [11] being possible
practical motivation. In contrast to the latter reference, the study at hand is focused
on the situation, when the relative sliding is not kinematically prescribed but rather
results from the loading on the system and may lead to full ejection. The intrinsic
curvatures (pre-curvatures) of the rod and of the sleeve are considered as load factors,
resulting into deformation and relative sliding, which potentially ends up in full ejec-
tion. A problem specific non-material finite element scheme with C1 inter-element
continuity and an additional unknown in form of the configurational parameter is used
to investigate the critical states in the space of parameters.

2 Problem statement

Schematically the problem under consideration is depicted in Fig. 1. Rod 1⃝ is par-
tially inserted into a flexible sleeve 2⃝, such that the overlapping region is bounded
by transition points A and B. Because the sleeve will also be modelled as a rod, we
simply speak about rod 1⃝ and rod 2⃝, both being inextensible, having length ℓ and
bending stiffness a (we assume the same bending stiffness to reduce the dimensional-
ity of the parameter space). The compound rod will thus be having bending stiffness a
in the first segment to the left of point A, where only rod 1⃝ is present and in the third
segment to the right of point B, where only rod 2⃝ is present. The bending stiffness
in the overlapping region (second segment) AB is 2a. The length of the first segment
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Figure 1: Flexible rod 1⃝ partially inserted in a flexible sleeve 2⃝ with transition points
A and B; the small gap in the overlapping region AB is for visualization
purpose only, here the geometries of both rods are identical

η is a configurational parameter and changes during the deformation of the structure
because of the sliding of the rods. The length of the second segment is thus ℓ − η,
and the material length of the compound rod is ℓ + η. The outer ends s = 0 and
s = ℓ+ η are either simply supported or clamped, but we kinematically prescribe the
horizontal distance between them 2ℓ−∆ with ∆ being the length of the overlapping
region in the absence of deformation. The structure is loaded by intrinsic curvatures
(pre-curvatures). The first rod has constant intrinsic curvature κ10, such that being
free from external actions it would take on the shape of an arc of a circle with the
radius κ−1

10 . The intrinsic curvature of the second rod is κ20. Changing these load-
ing parameters, we obtain various deformed configurations with different values of η.
The generalized force for this degree of freedom (which is frequently called configu-
rational parameter) is the configurational force, which appears because of the jump of
the curvature at the transition points. In the numerical procedure we will not need to
explicitly consider this force because it is automatically taken into account when the
total strain energy is minimized with respect to the deformed shape of the compound
rod (nodal unknowns in the finite element model) and η.

For the sake of simplicity, we will consider a non-dimensional formulation with
ℓ = 1. Moreover, because the total strain energy is proportional to a, we also consider
unit bending stiffness a = 1, which does not affect the deformed configurations. The
condition of inextensibility is applied in the numerical procedure by penalizing the
axial strain using tension stiffness b = 104, which is sufficiently high to result into
practically converged solutions.
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3 Strain energy

As mentioned earlier, for given parameters κ10, κ20 and ∆ the static configuration of
the centerline of the compound rod provides minimum for its total strain energy U .
We parametrize the position vector of a point on the centerline

x(s) = x(s)ex + y(s)ey (1)

as a function of the material arc-length coordinate s (which remains the arc-length
during deformation because of inextensibility). This corresponds to the material (or
Lagrangian) kinematic description, traditional in the structural mechanics. The total
strain energy comprises three integrals over the segments:

U = U1 + U2 + U3,

U1 =

∫ η

0

1

2

(
(κ− κ10)

2 + bε2
)
ds,

U2 =

∫ 1

η

1

2

(
(κ− κ10)

2 + (κ− κ20)
2 + 2bε2

)
ds,

U3 =

∫ 1+η

1

1

2

(
(κ− κ20)

2 + bε2
)
ds.

(2)

We denoted the geometric curvature of the inextensible rod and its negligibly small
axial strain by

κ = x′y′′ − y′x′′,

ε =
1

2
(x′ · x′ − 1) =

1

2

(
x′2 + y′2 − 1

)
.

(3)

Prime in x′ and y′ stands for the derivative with respect to s. We seek static equilibria
by minimizing the energy of the conservative system

U [x(s), η] → min (4)

with respect to the deformed centerline and the configurational parameter.

4 Non-material finite element model

Because η is not known in advance and the total length of the compound rod is chang-
ing, we cannot apply the standard finite element scheme with discretizing the material
domain and assigning constant values of the material coordinate s to the nodes. More-
over, because of the jumps in the bending stiffness and in the curvature it would not
be possible to simply scale the coordinate by a constant factor because it is clearly
desirable to have a mesh, in which nodes are placed in the transition points A and B.
This raises the need of transforming the formulation to the mixed Eulerian-Lagrangian
kinematic description in the spirit of [12, 13].
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We parametrize each of the three segments by a non-dimensional and non-material
coordinate σ ∈ [0, 1] with a linear and solution dependent mapping to the material
coordinate according to

segment 1: s = ση,

segment 2: s = η + σ(1− η),

segment 3: s = 1 + ση.

(5)

Note that when η is changing, the mapping changes as well and the σ coordinate of a
material particle s = const will become different. The finite element approximation
represents the position vector x as a function of σ in each segment. The requirement
of C1 inter-element continuity (no jumps in x′(s)) makes the choice of cubic Her-
mite shape functions natural, see [10, 14] for a general discussion of C1 continuous
approximation of the deformed geometry in modelling geometrically nonlinear rods.
We divide each segment into n elements with length 1/n in terms of σ and introduce
a local element coordinate ξ ∈ [−1, 1]. An element number i = 1 . . . n is bounded
by nodes i − 1, i with degrees of freedom xi and (∂ξx)i, that is 4 scalar degrees of
freedom per node. The deformed shape of the element is now parametrized as

x = S1(ξ)xi−1 + S2(ξ)(∂ξx)i−1 + S3(ξ)xi + S4(ξ)(∂ξx)i (6)

with cubic shape functions

[S1, S2, S3, S4] =
1

4

[
2− 3ξ + ξ3, (ξ − 1)2(ξ + 1), 2 + 3ξ − ξ3, (ξ − 1)(ξ + 1)2

]
(7)

fulfilling the conditions
S1(−1) ∂ξS1(−1) S1(1) ∂ξS1(1)
S2(−1) ∂ξS2(−1) S2(1) ∂ξS2(1)
S3(−1) ∂ξS3(−1) S3(1) ∂ξS3(1)
S4(−1) ∂ξS4(−1) S4(1) ∂ξS4(1)

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (8)

This choice of shape functions guarantees the continuity of x and ∂ξx across the
boundaries of the finite elements, which means the continuity of x′ because of the
proportionality of the derivatives. However, this simple formulation results into jump-
ing x′ across the boundaries of the segments in points A and B, in which ∂sσ is
discontinuous, which needs to be repaired by a simple extension of the finite element
approximation Eq. (6). It retains its look in the segments 1 and 3, and in the overlap-
ping segment 2 we replace it by

x = S1(ξ)xi−1 + S2(ξ)

(
1

η
− 1

)
(∂ξx)i−1 + S3(ξ)xi + S4(ξ)

(
1

η
− 1

)
(∂ξx)i. (9)

This solution-dependent scaling of the nodal derivatives in one of the segments exactly
compensates the jumps in ∂sσ, thus providing continuity of x′ in points A and B
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Figure 2: Deformed shape, simply supported ends, κ10 = 0, κ20 = 1.9, ∆ = 0.8;
segments 1 and 3 are depicted blue, and segment 2 (overlapping region) is
plotted red

when the degrees of freedom of the node n in the segments 1 and 2 are respectively
identified with the degrees of freedom of the node 0 in segments 2 and 3. Counting η
among the overall set of degrees of freedom of the model, we thus obtain a nonlinear
finite element approximation – which can, however, easily be treated using computer
algebra software1. We integrate the energy over each finite element using Gaussian
rule with 3 quadrature points and assemble the total expression for U as a function
of all nodal degrees of freedom and η, which we then minimize using the respective
routine. The boundary conditions impose additional constraints:

segment 1: x0 = 0, y0 = 0, if clamping: (∂ξy)0 = 0,

segment 3: xn = 2−∆, yn = 0, if clamping: (∂ξy)n = 0.
(10)

5 Simulation results: deformed configurations

Choosing specific values of κ10, κ20, ∆ and type of boundary conditions, we directly
minimize U using the straight configuration with η = 1−∆ as initial approximation.
Practically converged solutions were obtained with n = 8 finite elements in each seg-
ment, we used this discretization for obtaining the results in the following. At first
we study the deformed shapes of the structure with simply supported end points and
relatively high initial injection ∆ = 0.8, which allows for larger deformations until the
stability loss and full ejection. The situation, where just one of the rods has intrinsic
curvature is presented in Fig. 2; the red part of the line corresponds to the overlapping
region. The configuration is slightly unsymmetric and the ”injection depth” is rela-
tively high for the chosen value κ20 = 1.9 – although we will soon see that this state
is close to the stability boundary, and slight growth of the curvature would result into
complete ejection. Next we consider the case of equal natural curvatures in Fig. 3.
Much higher deformation level can be reached now such that the overlapping region
shrinks with no loss of stability. A solution with different signs of initial curvatures is
presented in Fig. 4. At κ10 = −κ20 the linear terms with κ vanish in the integral for U2

in Eq. (2), which makes the compound rod free from natural curvature in the overlap-
ping region. Still there is curvature in the deformed shape of the straight line because

1We implemented the simulation using Wolfram Mathematica, see https://wolfram.com/
mathematica.
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Figure 3: Deformed shape, simply supported ends, κ10 = 6, κ20 = 6, ∆ = 0.8
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Figure 4: Deformed shape, simply supported ends, κ10 = −2.6, κ20 = 2.6, ∆ = 0.8

of the horizontal reaction forces in the supports. Fig. 5 and Fig. 6 show that much
higher intrinsic curvatures are possible when the end points of the rods are clamped.

6 Simulation results: boundaries of existence of solu-
tions with partial injection

For both types of the boundary conditions and three different values of initial injec-
tion ∆ = 0.4, 0.6, 0.8 we investigated the shape of the boundary of the domain in the
parameter space (κ10, κ20), in which the solutions with partial rod contact and non-
vanishing overlapping region exist. For this sake we performed the simulation for
κ10 = κ0 cos θ and κ20 = κ0 sin θ, increasing κ0 in small steps as long as the numeri-
cal minimization of U produced physically meaningful solution with η < 1. Solution
from the previous step was used as starting approximation for the subsequent mini-
mization to follow a continuous equilibrium path, and the incrementation steps were
automatically reduced to obtain critical values with desired accuracy. Additionally, we
took care that η would steadily grow from step to step to avoid jumps to complicated
equilibria with self-intersections, which were otherwise eventually observed. Chang-
ing θ in small steps from 0 to π, we collected the critical values κ0∗(θ), thus forming
the stability boundary in polar coordinates.

For the simply supported ends the results are demonstrated in Fig. 7. The stability
zone is getting larger with growing ∆. For ∆ = 0.4 and ∆ = 0.6 the highest overall
level of initial curvatures is reached when θ = 3π/4 and κ10 = −κ20. However,
from the lower part of Fig. 7 we see that much higher curvature level is possible at
∆ = 0.8 in the vicinity of θ = π/4, where κ10 ≈ κ20, that is when the deformed
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Figure 5: Deformed shape, clamped end points, κ10 = 40, κ20 = 60, ∆ = 0.8
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Figure 6: Deformed shape, clamped end points, κ10 = −29, κ20 = 29, ∆ = 0.8

shapes are nearly symmetric. This interesting effect requires further investigation.
The open question is whether further stable solution branches could be detected if we
continuously move away from the obtained stable solutions downwards or to the left,
which was not covered by the current simple investigation.

The stability boundaries for clamped ends are depicted in Fig. 8. Interestingly,
much higher loading is possible in the antisymmetric range κ10 ≈ −κ20 when ∆ =
0.4, and for positive intrinsic curvatures the domains of stability for all three values of
the initial injection are quite similar.

7 Concluding remarks

For the problem of frictionless contact of an elastic rod and a flexible sleeve we pre-
sented a novel simulation technique, which makes use of a non-material finite element
approximation: the nodes of the finite element mesh are not bound to material parti-
cles, the latter may thus travel from element to element when the structure is deform-
ing. Depending on the natural curvatures of the rod and the sleeve, on the initial in-
jection length and the type of the boundary conditions various deformed shapes of the
compound structure in equilibrium are observed. Stability loss and complete ejection
is possible when the natural curvatures exceed critical values. A numerical investiga-
tion of the stability zones in the parameter space provides non-trivial results and raises
open questions concerning the existence of distant branches of the equilibrium path.
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