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Abstract 
 

An optimization-based strategy for designing concrete cable-stayed bridges under 

seismic action is presented. An initial designs module provides a convex optimization 

algorithm with multiple starting solutions from which local optimum solutions are 

obtained and the least cost solution is selected as the optimum design. The three-

dimensional analysis considers dead loads and road traffic live loads, geometrical 

nonlinearities and time-dependent effects. The modal response spectrum approach is 

used for seismic analysis. The design is formulated as the cost minimization subject 

to constraints on the displacements and stresses considering service and strength 

criteria defined according to the Eurocodes provisions. A constraint aggregation 

approach is adopted to solve the problem through the minimization of a convex scalar 

function obtained by an entropy-based approach. The discrete direct method is used 

for sensitivity analysis. The 64 design variables are the deck and towers’ sizes, the 

cable-stays' cross-sectional areas and prestressing forces, and the towers’ height. The 

optimization of a 312 m span bridge illustrates the features and applicability of the 

proposed strategy. The optimum design features a deck slenderness of 1/130 and a 

height of the towers (above the deck)-to-main span ratio of 0.205. 

Keywords: cable-stayed bridges, optimization, seismic action, concrete, cable forces, 

sizing design variables, shape design variables. 
 

1  Introduction 
 

Cable-stayed bridges are commonly used for medium-to-long spans because of their 

structural and construction efficiency, as well as their economic and aesthetic 
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advantages. Modern cable-stayed bridges present multiple inclined cable-stays 

providing continuous support and natural prestressing to the deck, allowing for 

spanning long distances with slender decks. The static and dynamic behaviour of these 

highly redundant structures is determined by the cable forces distribution, and the 

stiffness and mass of the load-bearing members (deck, towers and cable-stays). Due 

to their characteristic flexibility and low damping, their response to dynamic actions 

such as wind or earthquakes is of major relevance in the design of these structures 

[1, 2]. 

The seismic behaviour of cable-stayed bridges has been the focus of research for 

many authors. Abdel-Ghaffar and Nazmy [3, 4, 5] studied the three-dimensional 

seismic response of long-span cable-stayed bridges. Geometrical nonlinearities and 

uniform and multiple-support seismic excitations were considered. A step-by-step 

integration procedure was used to obtain the non-linear earthquake response. Relevant 

features of the seismic analysis are indicated, and aspects such as nonlinearities, 

spatial variability of the ground motion and structural configuration, affecting the 

seismic response are discussed. Morgenthal [6] studied the transverse seismic 

behaviour of cable-stayed bridges and analysed the improvement in the seismic 

response by using passive isolation devices in the connection between the deck and 

the towers. Cámara [7] investigated various analysis strategies for evaluating the 

linear and nonlinear dynamic behaviour of cable-stayed bridges. Furthermore, the 

influence of different design options and using passive devices placed in the towers 

to improve the bridges’ seismic behaviour were also analysed. Cámara and Efthymiou 

[8] studied the deck-tower interaction in the transverse seismic response of cable-

stayed bridges. The authors considered the contribution of different vibration modes 

and the influence of the main span length, the tower shape, the cable-system 

arrangement, the width of the deck, the height of the deck above the foundation and 

the soil conditions. These studies highlighted the importance of the cable-suspension 

system layout, the deck-tower connection, and the tower shape on the seismic 

behaviour of these bridges. 

The seismic analysis adds complexity to the challenging task of designing cable-

stayed bridges. This involves defining the structural system, finding the members' 

cross-sectional sizes, and calculating the distribution of cables’ forces. The analysis 

should consider geometrical non-linear effects, erection stages and the time-

dependent behaviour of concrete. Therefore, optimization techniques are particularly 

suited for assisting in this design problem aiming at economic and structurally 

efficient solutions. A recent literature survey by the authors [9] revealed that the 

optimization of cable-stayed bridges is a relevant topic of research. Previous works 

can be grouped into two main research subjects, namely, the cables’ forces 

optimization and the optimum design. This survey pointed out some expected future 

developments in this topic, which can be already identified in recent works. These 

include the use of metaheuristic algorithms [10, 11], artificial neural networks and 

surrogate models [12], the optimization of footbridges [10, 13], curved bridges [13, 

14], long-span bridges and multi-span bridges with innovative cable arrangements like 

crossing-cables. The optimum design including the response to wind [15, 16] and 

earthquakes [12, 14], the reliability-based optimum design and the robust design 



 

3 

 

including, for example, cable loss scenarios [17], were not amply addressed 

previously and represent subjects of relevance for upcoming research. 

The optimum seismic design of steel cable-stayed bridges was previously studied 

considering modal/spectral and time-history approaches [18], the simultaneous 

optimization of structure and control devices [19], and curved bridges with viscous 

dampers as control devices [14]. Franchini et al. [12] proposed the implementation of 

parameterised fragility functions for the surrogate-based sensitivity analysis and 

performance-based optimization of cable-stayed bridges subject to seismic action. 

This approach was applied to the optimization of a 542 m three-span bridge with 

concrete towers and a steel-concrete composite deck. The cross-sectional area of the 

cable-stays, the towers cross-sectional dimensions, the longitudinal and transverse 

steel reinforcement ratios were considered as design variables. The cables prestressing 

forces, the cross-sectional dimensions of the deck and towers’ geometry were not 

considered as design variables. The optimization of concrete cable-stayed bridges was 

previously addressed by the authors [20] but without considering shape design 

variables. 

The main objective of this work is to present an optimization-based strategy for the 

seismic design of concrete cable-stayed bridges with “H”-shaped towers. This 

optimization problem may be non-convex and the feasible domain may be non-

connected due to the dynamic loading. The problem presents a large number of design 

variables of different types (shape, sizing, and mechanical), and a large number of 

nonlinear and conflicting constraints. A computationally costly problem with a 

complex design space is expected. Gradient-based and metaheuristic algorithms can 

be used to solve this problem, which can be posed as a single objective optimization 

to minimize the cost of the structure subject to a set of constraints. Here, an efficient 

convex optimization technique using different starting designs is proposed to solve 

the original non-convex problem. Concerning previous works, in this paper shape 

design variables are considered in concrete towers, a different solution for the deck 

design is adopted which implies additional design variables, and a procedure to 

automate the definition of initial designs was implemented. 
 

2  Optimization strategy 
 

The proposed strategy comprises an Initial Solutions Module, and an Analysis & 

Optimization Module. This strategy was implemented in a computer program 

developed in MATLAB environment. The corresponding flowchart is depicted in 

Figure 1. 

The Initial Solutions Module efficiently provides the optimization algorithm with 

adequate starting designs thus contributing to the exploration of the design space. 

Each initial design is established by defining values for the cross-sectional dimensions 

of the deck and towers, as well as the height of the towers. The values of the 

corresponding design variables should be defined according to the usual dimensions 

of this type of bridge. For example, the depth of the deck should be set to achieve a 

deck slenderness of 1/100 to 1/120. The influence matrix method [21] is used to 

compute the cable-stays prestressing forces aiming to control the deck vertical 
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displacements and the towers' horizontal displacements for the bridge under dead 

load. The cable-stays' cross-sectional areas are determined from the cables’ axial 

forces under different load cases to satisfy the corresponding stress design constraints. 

The Analysis & Optimization module includes the structural analysis, the sensitivity 

analysis and the optimization algorithm. The finite element method was used for the 

three-dimensional analysis under static loading (dead load and road traffic live load) 

and seismic action, including geometrical nonlinearities and time-dependent effects. 

The deck and towers were modelled with 2-node and 12-degrees of freedom Euler-

Bernoulli beam elements. To consider the second-order effects, the stiffness matrix of 

the beam elements includes the elastic and geometric contributions and the cables 

were modelled as 2-node bar elements with an equivalent modulus of elasticity given 

by Ernst formulation [22]. Therefore, the structural analysis was conducted iteratively 

to perform a second-order elastic analysis. 

 

Figure 1: Flowchart of the optimization strategy. 
 

Structural concrete was modelled as a linear viscoelastic material and the time-

dependent effects of ageing, creep and shrinkage of concrete were evaluated according 

to NP EN 1992-1-1 [23] formulation. For a given time interval, it is possible to 

calculate nodal forces equivalent to the creep and shrinkage deformations. These 

forces produce the same displacements field as the time-dependent effects. Thus, the 

stresses are calculated using only the elastic constitutive relationship between stresses 

and mechanical origin deformations. A previous work by the authors [24] provides 

detailed information about the time-dependent effects modelling. 
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A linear elastic behaviour of the materials (structural concrete, reinforcing steel, 

structural steel, prestressing steel) was adopted. The materials nonlinearities were 

considered in the formulation of the design constraints regarding stresses in the 

different structural members. Homogeneous concrete cross-sections were assumed 

and the steel reinforcement was considered only for design purposes. 

The structural analysis under seismic action requires solving the dynamic 

equilibrium equation given by: 

( ) ( ) ( ) ( )turMtuKtuCtuM g
 −=++

        (1) 

where ( )tu , ( )tu  and ( )tu  are, respectively, the vectors of acceleration, velocity and 

displacement of the structure; M, C and K are, respectively, the mass, damping and 

stiffness matrices of the structure; r is an influence matrix relating the degrees of 

freedom of the structure and the ground acceleration components ( )  Z

g

Y

g

X

g

T

g uuutu  ,,=  

[25]. Different approaches can be adopted to solve Equation (1), such as time-history 

analysis or modal response spectrum analysis. In view of the computationally 

efficiency for an integrated analysis-and-optimization procedure, considering an 

elastic behaviour without control devices and a uniform support excitation, the latter 

approach was adopted here [18, 20]. This approach gives a set of pseudo-static forces 

leading to an envelope of the critical structural responses throughout the earthquake-

induced vibration process. The natural vibration frequencies and the corresponding 

mode shapes are obtained from the eigenvalue and eigenvector problem 

  0=−  MK

           (2) 

where 
2 =  are the eigenvalues or characteristic values representing the square of 

the free vibration frequencies ( ) and   represents the eigenvectors or mode shapes 

of the vibrating system [25]. This problem was solved using the MATLAB function 

eigs. A lumped mass matrix formulation was considered for the beam and bar 

elements used in the bridge model. The structure stiffness matrix, including elastic 

and geometric contributions, was evaluated in the dead-load permanent state [5, 26]. 

The seismic action was quantified using the Eurocode 8 [27] elastic response 

spectra. The maximum spectral accelerations, ( )iiai TS , , are obtained for a given 

damping ratio, i , and vibration period, iT , of each mode and for each direction. A 

constant damping ratio of %3=  was considered [5, 6, 28]. Considering the modal 

coupling that is present in the dynamic response of these bridges, the complete 

quadratic combination (CQC) was used for the combination of the maximum 

contribution of each mode [29]. As indicated in NP EN 1998-2 (2023) [30], the square 

root of the sum of squares (SRSS) rule was used to combine the seismic effects in the 

longitudinal, transverse, and vertical directions.  

The design of concrete cable-stayed bridges under seismic action seeks to minimize 

the bridge cost while satisfying a large number of design constraints concerning 

service and strength criteria. Finding the active set of constraints in gradient-based 
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nonlinear programming algorithms may pose a considerable difficulty in solving 

problems with a large number of constraints. Constraint aggregation approaches are 

particularly suited for solving problems with a large number of constraints using 

gradient-based algorithms. Classical (least p-norm and Kreisselmeier-Steinhauser 

(KS) function) or induced aggregation (induced exponential and induced power 

aggregation) methods can be adopted. Therefore, the problem can be solved as a single 

objective optimization problem to minimize the cost subject to aggregated constraints 

or as a multi-objective optimization by aggregating the cost and the design goals, 

defined by the constraints, in a single objective function. As in previous works by the 

authors, concerning the optimization of cable-supported bridges, the latter approach 

was adopted here. The multi-objective problem is solved by the minimization of a 

convex scalar function (Equation (3)) obtained through an entropy-based 

approach [31]. The scalar function aggregates all the design goals and creates a 

convex approximation close to the boundaries of the original non-convex domain. 

This function includes all the constraints with different probabilities of becoming 

active. As iterations proceed, there is decreasing uncertainty about which constraints 

are more relevant to find the optimum. This procedure reduces the cost objective with 

respect to previous iterations and simultaneously keeps all the constraints within 

limits. The design constraints, gj(x), do not have an explicit algebraic form, thus, the 

problem is solved using an explicit approximation given by the Taylor series 

expansion of all the constraints, around the current design variable vector, truncated 

after the linear term 
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       (3) 

where x is the vector of design variables, M is the number of design goals, N is the 

number of design variables, gj(x) is the j-th design goal, dgj(x)/dxi is the sensitivity of 

the j-th design goal with respect to i-th design variable. The aggregation parameter ρ 

must not be decreased during the optimization process and its value should be tuned 

for each problem. However, similar results are obtained with values ranging from 100 

to 2000. The accuracy of the explicit approximation was ensured by using bound 

constraints with move limits. The MATLAB function fmincon, which minimizes a 

scalar function of several variables subject to bound constraints using a sequence of 

quadratic problems, was selected to minimize the objective function. Different types 

of design variables were considered, namely, sizing, mechanical and shape design 

variables. Sizing variables refer to the cross-sectional dimensions of deck, towers and 

cable-stays. These variables directly influence the mass, stiffness and cost of the 

structure. A second type refers to the mechanical design variables corresponding to 

the cable-stays’ prestressing forces. These variables do not directly influence the cost 

but are fundamental in controlling the structural response of cable-stayed bridges. A 

third type was considered to characterize the geometry of the towers. These design 

variables affect the cable-supporting system, the mass, stiffness, and cost. The 

longitudinal and transverse steel reinforcement areas were considered constant design 

parameters with usual practical values defined as percentages of the concrete cross-

sectional area. Figure 2 shows the 64 design variables considered. 
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Figure 2: Design variables, material properties and unit costs. 
 

In the constraint aggregation approach adopted, the cost is considered the first 

design goal and can be expressed as 
 

( ) 01
0

1 −=
C

C
xg

           (4) 

where C is the current cost of the structure and C0 represents the initial cost of each 

analysis and optimization cycle. This approach always prioritises cost as one of the 

optimization objectives. A second set of objectives aims to limit the vertical 

displacements of the deck and the horizontal displacements of the towers under 

service conditions and considering the time-dependent effects 
 

( ) 01
0

2 −=
δ

δ
xg

           (5) 

where δ and δ0 are the displacement value and the limit value for the displacement 

under control, respectively. For the long-term analysis of the bridge, values of L/1000 

and H/1000 were considered for the limits on the vertical and horizontal 
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displacements, respectively. L and H represent the main span length, and the height 

of the towers, respectively. 
 

The stress constraints concerning the deck and towers’ members were defined 

based on the NP EN 1992-1-1 [23] and NP EN 1993-1-1 [32] provisions. Generally, 

these constraints can be expressed as 
 

( ) 013 −=
allowσ

σ
xg

          (6) 

where σ and σallow are the acting stress and the corresponding allowable stress, 

respectively. Different values for the allowable stress were considered for service 

conditions and strength verification of concrete members. For service conditions, 4.1 

MPa and 22.5 MPa were used for tension and compression, respectively. For strength 

verification, the allowable value represents the structural concrete member’s 

resistance, including reinforcement, evaluated according to the acting internal forces, 

such as bending and axial force, biaxial bending and axial force, or shear force. For 

structural steel members (deck transverse beams) under service conditions, the acting 

stress is evaluated according to the Von Mises criteria, and the allowable stress 

corresponds to the nominal value of the steel yield strength. For strength verification, 

the acting stress represents the acting internal force (bending moment or shear force) 

and the allowable value is the corresponding resistance evaluated assuming Class 1 or 

Class 2 cross-sections. Another set of constraints concerns the cable-stays’ stresses 

and can be written as 
 

( ) 014 −


=
pkfk

σ
xg

           (7) 

( ) 0
10.0

15 


−=
pkf

σ
xg

          (8) 

where σ and fpk are the acting stress and the characteristic value of the prestressing 

steel tensile strength, respectively. The value of k in Equation (7) was considered 

equal to 0.50 for service conditions and 0.74 for strength verification. Equation (8) 

refers to a lower limit for tension in the cable-stays to ensure their structural 

efficiency. 

The optimization algorithm requires the gradients of the objective function and all 

the design constraints with respect to the design variables. This information is 

provided by the sensitivity analysis. From the available approaches, the discrete direct 

method was chosen, using both analytical and semi-analytical derivatives. 
 

3  Numerical example 
 

The numerical examples concern the optimization of a symmetrical concrete cable-

stayed bridge with a total length of 312 m and a main span of 160 m (Figure 3). The 

total height of the towers is given by x63+x64, with the deck placed 20 m above the 

foundation. A semi-harp cable arrangement with lateral suspension and a total of 80 

cables was considered. The cable spacing is 8 m on the deck and is defined by variable 
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x64 on the towers. A full suspension solution was chosen as usual in the design of 

cable-stayed bridges in earthquake-prone areas. The deck is simply supported at the 

abutments, continuously supported by the inclined cable-stays along the bridge length 

and it is not supported at the towers. The deck-tower connection is only in the 

transverse direction and was modelled with link elements with stiffness of 1.0×103 

kN/m. A beam-and-slab cross-section was considered for the deck. The slab is 

supported by longitudinal concrete beams and transverse steel beams. The use of steel 

transverse beams allows reducing the deck weight, which favours both the static and 

seismic behaviour. A similar solution was adopted in the Vasco da Gama bridge, in 

Lisbon, Portugal. The transverse beams feature an “I”-shaped profile and 4 m spacing. 

“H”-shaped towers with rectangular hollow sections were considered. Given that the 

soil-structure interaction was disregarded, fixed supports were adopted for the towers. 

Beam elements were used to model the towers and the deck’s longitudinal and 

transverse beams. Axially stiff bar elements were used in modelling the deck as an in-

plane rigid diaphragm. The bridge finite element model is depicted in Figure 3 and 

has a total of 218 nodes and 533 finite elements. The properties and unit costs of the 

materials considered are presented in Figure 2. 

 
Figure 3: Finite element mesh of the bridge example. 

Six load cases were defined to check the relevant service and strength design 

constraints. The first case refers to the bridge under dead load (self-weight and an 

additional dead load of 2.5 kN/m2 corresponding to flooring, walkways, safety 

barriers and guardrails) at the end of construction. The second case corresponds to the 

long-term analysis (18,250 days) of the bridge under the quasi-permanent load 

combination (dead load plus 20% of road traffic live load). To consider the most 

unfavourable effects of the road traffic live load (5 kN/m2), three additional load cases 

were considered. These correspond to the live load placed on the entire deck length, 

or only in central or side spans. The sixth load case corresponds to the bridge under 

dead load, plus 20% of the live load on the entire deck and the seismic action. The 

construction stages are relevant in the design of cable-stayed bridges. However, the 

current paper focuses in the static and seismic response of the complete bridge and 

thus, the erection stages were not directly considered. The response spectrum used to 

quantify the seismic action was defined from the Eurocode 8 [27] elastic response 

spectra considering a type A ground (rocky soil) and type 1 spectrum (more dangerous 
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because presents higher spectral accelerations for the long period area that 

characterizes these structures). The value of the design ground acceleration, 

gag = 5.0 , was defined according to the Portuguese National Annex for a seismic 

zone 3 and an importance class III. Considering the same document the design ground 

acceleration in the vertical direction was taken as gvg aa = 75.0 . Cable-stayed bridges 

present long vibration periods, thus, the requirements about spectra for periods longer 

than 4 s were considered. A behaviour factor, 0.1=q , was adopted [30]. Considering 

the type of ground and the distance between supports the spatial variability of the 

seismic action was disregarded. 

The problem features 64 design variables and more than 2300 design constraints 

for the six load cases. To explore the design space, eight initial designs were 

considered and optimized. These were defined by varying the deck sizes and the 

height of the towers aiming at deck slenderness between 1/100 and 1/130, and a height 

of the towers (above the deck)-to-main span ratio between 0.20 and 0.275. The 

presented results refer only to the initial and final values of the optimum solution. 

Figure 4 presents the evolution of the bridge cost throughout the optimization process. 

Figure 5 depicts the initial and final values of the cables' cross-sectional areas and 

prestressing forces for the optimum solution. The cables are numbered from the 

abutments to the central span. 
 

 
Figure 4: Bridge cost vs. number of iterations – optimum solution. 

 

The optimum solution presents a cost reduction of 14.5% concerning the initial 

solution. This is due to a reduction in the sizing design variables of the deck and 

towers (Table 1). In the optimum solution the deck, towers and cable-stays represent 

31.4%, 9.5% and 59.1% of the total cost, respectively. The value obtained for the 

cable-stays in mainly due to a fixed cost (18.500 €/cable). The cost of the deck does 

not include the slab and refers only to the longitudinal and transverse beams. The 

active constraints at the optimum are the deck vertical displacements for load case 2, 

the cables stress for load cases 2 to 5, the deck transverse beams bending resistance 

for load cases 3 to 5, the deck longitudinal beams bending resistance for load case 5 

and the towers biaxial bending and axial force resistance for load cases 4 to 6. For the 

optimum solution the first three vibration periods are 3.73 s, 3.14 s and 2.76 s, 
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corresponding to transverse, vertical and longitudinal modes, respectively. The 

vibration period of the 30th mode is 0.51 s. Of the 1276 modes that could be included 

in the modal superposition, only the first 30 modes were considered. For the optimum 

solution, these 30 modes represent 90.7, 76.7 and 78.2% of mass participation in the 

longitudinal, transverse and vertical directions, respectively. 
 

Design variable Initial value Final value Design variable Initial value Final value 

x41 [m] 1.230 1.228 x53 [m] 0.300 0.202 

x42 [m] 0.820 0.702 x54 [m] 0.300 0.201 

x43 [m] 0.738 0.516 x55 [m] 3.000 2.612 

x44 [m] 0.400 0.401 x56 [m] 3.000 2.606 

x45 [m] 0.012 0.007 x57 [m] 0.300 0.202 

x46 [m] 0.027 0.025 x58 [m] 0.300 0.202 

x47 [m] 4.000 3.878 x59 [m] 3.500 2.618 

x48 [m] 4.000 3.872 x60 [m] 3.500 2.618 

x49 [m] 0.300 0.203 x61 [m] 0.300 0.202 

x50 [m] 0.300 0.201 x62 [m] 0.300 0.202 

x51 [m] 3.500 2.826 x63 [m] 30.500 19.187 

x52 [m] 3.500 2.820 x64 [m] 13.500 13.644 

Cost Initial value Final vale Cost Initial value Final vale 

Deck 1,069,994 € 846,374 € Cable-stays 1,575,268 € 1,589,854 € 

Towers 504,883 € 255,675 € Total cost 3,150,146 € 2,691,903 € 

Table 1: Initial and final values of the cost and design variables 41 to 64 – optimum 

solution. 
 

 
Figure 5: Initial and final values of the cable-stays’ prestressing forces and cross 

sectional areas – optimum solution. 
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4  Conclusions and Contributions 
 

The following conclusions can be drawn: 

• The seismic design of concrete cable-stayed bridges with “H”-shaped towers is 

solved as an optimization problem to minimize the cost subject to constraints on 

the displacements and stresses considering service and strength criteria. 

• A convex optimization strategy is used to solve the original non-convex problem. 

This strategy combines a constraint aggregation approach to efficiently solve a 

problem with a large number of design variables through a gradient-based 

optimization, and a procedure to automate the definition of initial designs. Local 

optimum solutions are obtained from each starting design and the least cost 

solution is selected as the optimum design. 

• By rearranging the stiffness and mass distribution between the load-bearing 

members, the algorithm finds minimum-cost solutions while improving structural 

response under both static loading and seismic action. The optimum solution 

satisfies all the design constraints and features cost reduction due to a decrease in 

the values of the sizing design variables of the deck and towers.  

• In the optimum solution the deck, towers and cable-stays represent 31.4%, 9.5%, 

and 59.1% of the total cost, respectively. The design is governed by the deck's 

vertical displacements, the cables’ stress, and the deck and towers’ resistance. 

• Regarding the tower geometry, the optimum solution features a height of the towers 

(above the deck)-to-main span ratio of 0.205. The solution adopted for the deck 

allows weight reduction which favours static and seismic performance. A deck 

slenderness of 1/130 is obtained in the optimum solution.  

• Future developments should consider towers with different typologies, such as, 

“A”-shaped and “inverted Y”-shaped. Different intensities of the seismic action 

should be also considered. Different support conditions for the deck should be 

investigated. These include the deck-tower connection in the longitudinal and 

transverse directions and the bearings at the abutments. The simultaneous 

optimization of structure and vibration control devices should be also considered. 

• Combining the gradient-based algorithm with a global search procedure will be 

addressed in upcoming research, thus, contributing to the exploration of the 

complex design space.  
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