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Abstract

This work investigates the use of explicit level set parameterisation for topology
optimisation using a metamodel-based trust region strategy optimiser. The explicit
level set parameterisation consists of building a uniform Design of Experiments
using a Permutation Genetic Algorithm, followed by building the Level Set Func-
tion using Kriging. Through decoupling the parameterisation from the simulation
physics, the use of sensitivity data becomes optional thus enabling computation-
ally complex disciplines (where sensitivity data is not available, e.g. crashwor-
thiness, electromagnetics) to be included. This is achieved through the use of a
sequence of approximations to the functions of the original optimisation problems
based on a trust region strategy. The method is demonstrated on a benchmark 2D
topology optimisation problem to examine the effectiveness of the technique.
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1 Introduction

Metamodel-based optimisation is a methodology used to reduce the computational
cost and numerical noise in optimisation problems that require a large number of
complex simulations. It is particularly advantageous for problems where sensi-
tivity data is not available and when the response functions have significant nu-
merical noise. The quality of a metamodel is dependent on several factors: the
reliability and accuracy of the response data, the effectiveness of the Design of
Experiments (DoE) for gathering information for metamodel building, the size
of the domain in which approximations are built relative to the entire design do-
main, the simulation data accuracy and the number of DoE points used to build
the model [1, 2, 3].

One strategy to achieve a higher quality and more reliable metamodel is to in-
vestigate a sub-domain of the design space and employ a strategy to iteratively up-
date the size and location of this region - known as trust region strategies. A trust
region strategy was introduced as early as 1944, by Levenberg [4], where it was
implemented to solve a nonlinear least squares problem using a Gauss-Newton
optimiser. The trust region strategy was later rediscovered independently by Mor-
rison [5] and Marquardt [6] hence later was termed the Levenberg-Morrison-
Marquadt method in acknowledgement of all of their contributions. The Mar-
quardt [6] method modifies Levenberg’s method to incorporate a damping term to
restrict the step length, and thus prevent an oversized step being taken; therefore is
now also known as the Damped Least-Squares method. It was not until the review
paper by Moré [7] in 1983 that ‘trust region’ became widely accepted terminology
[8].

Figure 1: Level Set Function contour extraction for a 2D application

The Multipoint Approximation Method (MAM), also referred to as the Mid-
range Approximation Method, is a trust region strategy metamodel-based opti-
miser. The heritage of the MAM dates back to Toropov [9, 10], Toropov et al.
[11] and has been continuously developed to include new features [12, 13, 14].
The MAM algorithm arrives at a solution by iteratively solving approximated sub-
problems in trust regions that translate and resize as the search progresses. Each
iteration builds an approximated model from the simulation response data, solves
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the optimisation problem, employs the trust region strategy to update the trust re-
gion’s size and location, and begins the next iteration by populating the updated
trust region with a DoE – with adaptions to prevent the algorithm becoming stuck
in non-converging loops or converging to local minima [15, 16, 17].

Topology optimisation has taken many forms since it’s inception, including:
Homogenisation [18], Solid Isotropic with Material Penalisation (SIMP) [19],
Level Set Method (LSM) [20], Evolutionary Structural Optimisation (ESO) [21],
Ground Structure [22], Moving Morphable Components/Voids (MMC/V) [23]
also referred to as Feature-Driven Optimisation (FDO) [24]. It is commonplace
to use derivatives of the simulation physics’ objectives and constraints – known
as design sensitivities – to drive the optimisation, reducing the computational ex-
pense and enabling use of large numbers of design variables – though derivative-
free topology optimisation has been in development as well [25, 26]. However,
the use of sensitivities comes with a caveat, when derivatives are not available
sensitivity-based approaches cannot perform. This is particularly common in Mul-
tidisciplinary Design Optimisation (MDO) applications where numerically noisy
and mathematically intricate disciplines are used, e.g. crashworthiness and elec-
tromagnetics.

Figure 2: Design of Experiments (left), respective experiment point values (cen-
tre), and metamodel fit (right)

2 Topology Optimisation

Topology optimisation takes several forms. The most common is density-based
topology optimisation, such as the SIMP method. However, density-based meth-
ods require a large number of design variables (one for each finite element within
the mesh) – thus, adjoint differential equations must be solved for the response
sensitivities to enhance the computational efficiency. This proves problematic for
handling disciplines where the adjoint equation for the state variables is not eas-
ily derived, also when coupling several solvers is required for multidisciplinary
applications [27, 28, 29].

Another primary approach to topology optimisation is the Level Set Method
(LSM). The LSM is a boundary variation technique, where a level plane intersects
a function, the contours depicted by the contact between the function and the ‘level
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set’ are implicitly extracted. The mathematical description of the LSF ϕ for the
boundaries at a contour can be expressed as

ϕ(X) > c ⇐⇒ X ∈ Ω (Material), (1)
ϕ(X) = c ⇐⇒ X ∈ ∂Ω (Contour), (2)
ϕ(X) < c ⇐⇒ X ∈ D (Void), (3)

where c denotes a constant (commonly set to be 0, thus sometimes referred to
as the ‘zero-level set’), and X denotes a position in the domain. The LSF and
contour are illustrated by Figure 1 - where Ω, ∂Ω and D represent the material,
contour and void regions, respectively.

2.1 Level Set Method variations

Conventional Level Set Methods (LSM) for topology optimisation employ the
Hamilton-Jacobi (H-J) equation to describe the motion of implicit boundaries at
the material-void interface. This process iteratively progresses to optimise the
topology within a given domain, subject to specified loads and constraints. This
approach has been developed in recent years by the level set community, to in-
clude diffusive operator and reaction term – which act as regularisation meth-
ods to smooth the Level Set Function (LSF) and promote stability within the
technique [30]. Due to the implicit parameterisation of the LSF, these methods
do not face the same limitations of parametrically or explicitly parameterised
LSM techniques, such as limitations in design freedom and requirement of re-
parameterisation throughout the optimisation process [31]. The H-J equation is a
first order partial differential equation (PDE) that describes the motion of extremal
geometries in optimisation problems. The H-J PDE is mathematically described
as

∂ϕ

∂τ
+ vn | ▽ϕ |= 0, (4)

where τ represents the pseudo-time (the iterations in the optimisation process),
and vn is the normal velocity field. Any particular contour configuration for the
Level Set material-void boundary can be described by an infinite number of po-
tential LSFs, therefore to ensure regularity in the LSF it is usually re-initialised
every few steps. However, the process of re-initialisation is expensive, a potential
source of errors in the boundary and can also prevent the nucleation of new holes
in the material domain (if not addressed through an alternate scheme). Topologi-
cal derivatives have been successfully incorporated into the Level Set scheme as
a mechanism to enable hole nucleation, but may present a challenge due to the
discontinuous nature of the topological derivatives when combined with the con-
tinuous shape derivatives [32, 33].

The LSF of conventional LSM is commonly parameterised by locally sup-
ported shape functions

ϕ(X, t) =
∑
i

φi(t)Ni(X), (5)
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where Ni(X) denotes the local shape function at a node of the finite element
mesh in the domain, and φ(t) is the nodal level set value. Through decoupling
the parameterisation of the LSF from the discretisation of the structural model the
LSM problem can be described parametrically. This is achieved by introducing
the parameterised LSF into the H-J equation. By treating the LSF as a parame-
terised implicit surface, the optimisation problem can be treated as a conventional
parametric optimisation problem thus enabling the use of nonlinear mathematical
programming techniques. This has been referred to as the Parametric Level Set
Method (PLSM) in the literature and acts as solution to limitations innate to the
conventional LSM, such as: difficulties in nucleating new holes, discrete represen-
tation and slow design evolution due to the Courant–Friedrichs–Lewy condition
requirement in order to satisfy stability and convergence criteria of the H-J equa-
tion [34, 35, 36]. In the PLSM the LSF is parameterised by any form of basis
function that is substituted into the H-J equation, such as RBF

ϕ(X, t) = Φ(X)Tα(t) =
∑
i

αi(t)φi(X), (6)

where Φ is the vector of basis functions, αi(t) is the RBF expansion coefficient
(weight) and φi(X) is the corresponding RBF that exists in the domain space
defined by X [34, 35, 36]. The governing equation for φi(X) depends on the
type of RBF used, such as compactly-supported [36, 37, 38], multi-quadratic [34,
35, 39], inverse multi-quadratic [40], Gaussian [41], etc. Non-uniform rational B-
spline (NURBs) can also be used via the same principle [42, 43]. By substituting
this equation back into the H-J equation,

Φ(X)T
dα(t)

dt
− vn | (▽Φ)Tα(t) |= 0, (7)

which can be broken down into a system of first order Ordinary Differential Equa-
tions (ODEs) and transformed to a parameter optimisation problem that can be
solved via nonlinear programming techniques. Additionally, this parameterisa-
tion removes the requirement for re-initialisation that is innate to the conventional
LSM – and thus eliminates the limitation in nucleating new holes [34, 35]. The
use of shape and/or parameter sensitivity analysis is intrinsic within the H-J-based
LSM; thus sharing the same limitations as density-based topology optimisation
methods discussed previously [20, 44, 45, 46].

A variation of the LSM that does not utilise the H-J equation in the update
procedure entirely, but rather uses an explicit parameterisation of the LSF is re-
ferred to as Explicit Level Set Methods (ELSM). However, this requires an alter-
native approach to describing the material-void contour – that is conventionally
described by the H-J equation. Research by de Ruiter and van Keulen [47] re-
ferred to this approach as the Topology Description Function (TDF), using Radial
Basis Functions (RBFs) to parameterise the LSF and a genetic algorithm as the
optimiser. Gomes and Suleman [48] parameterised the LSF using coefficients of
the Fourier series expansion. Kreissl et al. [49], also used RBFs to parameterise
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the LSF but introduced a geometric Immersed Boundary Technique (IBT) to dis-
cretise the domain coupled with explicit smoothing. The use of the MMC/FDO
to explicitly parameterise the LSF was performed by Zhang et al. [50], where the
Method of Moving Asymptotes (MMA) was used to drive the optimisation.

The use of function derivatives (shape sensitivities) to drive the optimisation
process within ELSM techniques is almost assumed. van Dijk et al. [51], wrote
“explicit level-set methods use the sensitivities of the response functions to the
nodal values of the level-set function directly in the optimisation algorithm”.
However, as mentioned previously, in MDO applications and when addressing
disciplines with difficult responses, calculating sensitivities is not always possi-
ble. This work proposes a methodology to perform topology optimisation without
a requirement for the sensitivity analysis. Gomes and Suleman [48, 25] demon-
strated a sensitivity-free ELSM methodology via the use of a trust region strategy
optimiser to treating coefficients of a Fourier series as design variables, though
concluded further work in linear static topology optimisation would include pa-
rameter sensitivities.

Conventional LSM Parametric LSM Explicit LSM

Parameterisation Local shape functions Basis Functions RSM or MMC/V
LSF variable dependence Implicit Explicit Explicit
Update Procedure Hamilton-Jacobi equation Nonlinear programming Nonlinear programming
Governing equations Partial differential equation Ordinary differential equations Dependent on parameterisation

Table 1: Comparison of Level Set Methods for shape and topology optimisation
techniques

3 Multipoint Approximation Method

The Multipoint Approximation Method (MAM) is a trust region strategy opti-
miser that builds an approximated model (metamodel) of the objective function
and constraint data at every iteration [9, 10, 11, 12, 52]. This work utilises the
MAM as the update procedure for the ELSM for topology optimisation in order
to find the design variables (LSF experiment response values displayed in Figure
2) – and in turn optimise the material domain of the Level Set plane.

Trust region strategies create a series of region within which the responses can
be trusted. The optimum point of the trust region is found and is used to decide
upon the direction and size of the next step. With each step, the trust region can
be transformed and/or translated. The MAM’s trust region strategy takes the cen-
tre of the trust region for the following iteration as the optimum point determined
by the current step. However, in scenarios where optimum point lays on or near
the boundary of the design space, the resultant trust region will exceed the design
space limits. Thus, by removing the region of the trust region breaching the design
space boundary, the resultant trust region shape changes and therefore so does the
centre point location. The trust region translation cannot exceed the boundaries
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Build initial trust region surround-
ing user defined starting point

Populate trust region to make
m DoE points in n dimensions

Perform simulation for
each of m DoE points

Build n-dimensional meta-
model for each objective
function and constraint

Populate trust region
with k candidate points

Optimise metamodel starting
from each candidate point

Translation and re-
sizing of trust region Converged?

Reuse
metamodel?

Check for existing DoE points
within updated trust region

Terminate algorithm

No

Yes

No

Yes

Figure 3: Multipoint Approximation Method design optimisation algorithm,
where n, m and k are user-defined integers for the number of design
variables, DoE points and candidate points, respectively
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of the trust region – this prevents excessively large steps being taken beyond the
validity of the approximated models. The use of a trust region strategy optimiser,
such as the MAM, within the ELSM for topology optimisation framework im-
proves the chances of converging to a non-local optimum, and enables solving
optimisation problems with disciplines for which sensitivities are not available
[53, 54, 16].

Metamodels are used to approximate a model using limited amount of data
from the original model, i.e. a ‘model of a model’ [55]. The effects of this on a
function’s response are: reduced numerical noise, decrease in computational sim-
ulation time, reduced computation expense, and a reduced risk of simulation fail-
ure [56]. Metamodels are built from a series of a data points distributed through-
out the current trust region - the method for distributing those points uniformly as
possible is known as the Design of Experiments (DoE).

Two separate types of metamodels are used within this implementation of the
Explicit Level Set representation for topology optimisation: one is a level set func-
tion metamodel (defined in the physical space), and the other is a metamodel built
within a current trust region in the N -dimensional design variable space while
solving a parametric optimisation problem. Here N is the number of sampling
points used to define the level set function. Several metamodelling techniques
have been implemented, chosen to match their advantageous attributes to their
purpose. A set of design variables that describe the LSF represent an experiment
point within a trust region, where the respective response function values are used
to build an N -dimensional optimisation problem.

3.1 Design of Experiments (DoE)

The DoE and metamodel building used for establishing the terrain of the level set
function are independent from the metamodels that are used sequentially in the
trust regions of the design variable space used within MAM. The MAM objec-
tive function DoE is built via a novel Non-collapsible Latin Hypercube (NLH)
method. This method entails iteratively introducing experiment points and impos-
ing forbidden regions with respect to each experiment point – regions in which
next experiment points should not be positioned. These regions consist of strips
of a prescribed width that extend along the constant value for each dimension,
and n-dimensional hyper-sphere sections with a defined radius surrounding the
experiment points – illustrated for a two-dimensional problem in Figure 4. This
method of obtaining a DoE is computationally inexpensive, and advantageous
when adding points to a domain with existing points, but does not necessarily
have the best space-filling properties. The forbidden regions are scaled to the
size of the trust region the NLH is populating – enabling DoE points to be closer
together as the MAM progresses [57, 52].
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Figure 4: Schematic of the forbidden regions implemented by the Non-collapsible
Latin Hypercube Design of Experiments technique in two-dimensions

3.2 Trust region metamodel

A metamodel within an n-dimensional trust region is built from a minimum of
n+1 DoE points. The MAM algorithm is not limited to particular metamodelling
techniques, thus the choice of metamodel technique is dependent on the desirable
properties of the problem, e.g. lower fidelity and fast simulation, or higher fidelity
with justifiably higher computational processing time. In this work, the Moving
Least Square Method (MLSM) is used for this purpose, as in the work of Polynkin
and Toropov [58]. The MLSM is a adaption of the Weighted Least Squares (WLS)
method, which is a generalisation of the Ordinary Least Squares (OLS) method
– a commonly used approach for linear regression in statistics. Least Squares
methods, as the name suggests, minimise the sum of squares; i.e.

OLS :
N∑
i=1

[
f̃(xi,a)− f(xi)

]2
, (8)

WLS :
N∑
i=1

wi

[
f̃(xi,a)− f(xi)

]2
, (9)

where f(xi) and f̃(xi) denote the experiment point’s values and approximated val-
ues, respectively, a denotes the vector of regression coefficients used to minimise
the sum of squares, and wi represents the weight associated with each sampling
point, i. Within the MLSM, the weight is dependent on the distance between the
DoE point, xi and the point being evaluated, xe. In this approach the weights are
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calculated from a Gaussian weight decay function,

wi = e−θr2i , (10)

where ri is the distance (Euclidean norm) between the experiment point and the
evaluation point, i.e. ri = ||xi − xe||. The metamodel’s surface sensitivity to the
function value at experiment points is controlled by a ‘closeness of fit’ parameter,
θ. The greater the value of θ, the more rapid is the weight decay, and therefore,
the closer the fit. However, if the value of θ is too large then artificial noise can be
introduced and the accuracy of the metamodel is reduced [59, 60, 61].

3.3 Optimisation within a trust region

The optimum point in the trust region is to be found. This is achieved by using a
multi-start of a nonlinear programming method, which produces a set of candidate
points. The candidate points are distributed throughout the trust region with the
same DoE method used to populate the experiment points (NLH in this work).
Starting from the candidate points a gradient-based line search optimisation via
the Sequential Quadratic Programming (SQP) method [62]. The candidate points
are then examined, removing candidates that converged to be duplicates (existing
within predefined range), and cross-examined to the DoE points to ensure that
there was no better solution. The resulting data is then used to influence the trust
region strategy decision. In this work 10 candidate points have been used in each
trust region.

Inequality constraints are used in this work, as equality constraints can impose
too large an influence on the optimisation problem, leading to premature conver-
gence to local minima. As one would expect improved objective function values
as the constraint(s) responses increase, the optimiser will move towards the upper
limit of the constraint regardless. Constraint violations are treated by a p-norm
penalty function. The penalised objective function value for a set of design vari-
ables f(s) is the sum of the objective function and the penalty function P , defined
as

f(s) = f(s) + P, (11)

P = α×
∑
i

[max(0, gi − 1)]β, (12)

where P is the sum of constraint violations for i constraints, subject to coefficient
and exponent, α and β. Constraint values are scaled such that feasible (non-
violating) values exist in the range of 0 ≤ gi ≤ 1. In this work, the coefficient
α = 1, and the exponent β = 1 resulting in a linear trend with a low gradient.
This is done to provide the optimisation problem with as much design freedom as
possible, to reduce likelihood of converging to a local minima, yet still includes a
convex vertex to encourage the optimiser to converge to exactly the upper limit of
the constraint(s).
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3.4 Trust region strategy

Start

Is metamodel
quality good?

All DoEs
infeasible?

Is best
candidate
internal?

Trust region
size small?

Oscillating?

Same
direction?

Enlarge trust
region size

Reduce trust
region size

Change move limits

Continue Converged

Yes

No τ = Red coef1

No

Yes

Yes

No Yes

No

τ = Red coef2

No

Yes τ = Red coef3

Yes

No
τ = Con coef

τ = Enl coef

Figure 5: Trust region strategy within the Multipoint Approximation Method

The trust region strategy is the definitive decision making process of the MAM
algorithm. The trust region strategy decides: the termination or continuation of
the optimisation loop; the transformation and translation of the trust region; and
the reuse of metamodels. This utilises information from the metamodel quality,
trust region size, optimal point (location and direction) and DoE points to drive
the decisions made by the trust region strategy at each iteration, as displayed in
Figure 5.

The quality of the produced metamodel is then evaluated, calculated from the
Root Mean Square Error (RMSE), ϵ,

ϵ =

√∑m
i=1(yi − ỹi)2

m
, (13)

for m experiment points; where ỹi and yi represent the approximated and actual
response values, respectively. Predefined quality values for a good (ϵgood) and very
good (ϵv.good) RMSE are used by the trust region strategy.
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The trust region size, rk, for the current iteration, k, is calculated as a percent-
age of the entire design space (set by the bounds of the design variables). As
the trust region size is used to make decisions within the trust region strategy,
threshold values need to be set. A sufficiently small trust region size, rsmall, for
acceptable convergence is defined by the user. Additionally, a trust region mini-
mum size, rmin, is defined to that indicate when rk < rmin convergence has not
been met due to an error in the problem formulation, and to terminate the MAM.

The location of the optimal point of the current iteration is evaluated to deter-
mine if it is in internal, or lies on the bounds of the trust region. An internal point,
where Ak

i < xi < Bk
i (where Ak

i and Bk
i denote the lower and upper bounds of

the trust region at iteration k, respectively), indicates that the optimisation process
is approaching the true optimum.

The angle, αk, between the prior two move vectors (using three prior optimal
points) of the trust region’s movement is calculated. The magnitude of this angle
is defined as a non-dimensional parameter,

Θk = cos(αk) =
vk−1 · vk

| vk−1 | · | vk |
, (14)

where v denotes the move vector for the current iteration, k, and the prior iteration,
k − 1. The value of Θk is monitored to account for predictable patterns in the
movement of the trust region; such as oscillating directions (Θk ≤ Θmin) and
continuous movement in one direction (Θk ≥ Θmax for l iterations), as shown in
Figure 6.

Next, it is determined whether all DoE and candidate points within the current
iteration’s trust region violate a constraint. If this is the case then it suggests that
the trust region has moved into a region of the design space that does not have any
feasible solutions.

Parameter Value

ϵgood 5%
ϵv.good 0.5%
rsmall 1%
rmin 0.2%
Θmax 0
Θmin 0.8
l 10

Table 2: Trust region strategy quality parameters

The convergence criteria of the MAM are defined within the trust region strat-
egy. The MAM will converge when the following criteria are met:

1. the trust region size is sufficiently small (r ≤ rsmall)

2. feasible point has been found (gj(s) ≤ 0)

12



Figure 6: Oscillation angles of optimum points, where top and bottom denote
when Θk > 0 and Θk < 0, respectively

3. the metamodel is of good quality (ϵ ≤ ϵgood)

4. the optimal point is internal (Ak
i < xi < Bk

i )

where r denotes the trust region size; ϵ is the Root Mean Squared Error of the
metamodel (a quantitative parameter for the metamodel quality); and the bound-
aries of the point of the domain are represented by Ak

i and Bk
i , all calculated for

point xi in iteration i.

τ Value Reuse Reuse
metamodel condition

Red coef1 8.0× 10−1 No N/A
Red coef2 7.5× 10−1 No N/A
Red coef3 8.0× 10−1 No N/A
Enl coef 1.5× 10−0 Yes Θk ≥ Θmax

Con coef 1.0× 10−0 Yes ϵ ≤ ϵv.good

Table 3: Trust region strategy sizing coefficients used in this work
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3.5 Capabilities

The MAM has been shown to have a nearly linear dependence of the number of
function evaluations to the number on design variables. Thus, the ability to handle
large numbers of design variables with a relatively low number of function calls
thus reducing the computational cost. Recent research performed by Gergel et al.
[63] tailored the MAM’s parallel computing capabilities, testing problems up to
1000 design variables.

In this work the MAM architecture has been utilised to perform multidisci-
plinary topology optimisation. This is feasible due to the MAM’s handling of
function approximations for individual disciplines. Such metamodels can be com-
bined in a single optimisation problem, which can then be solved to determine the
solution of a multidisciplinary problem [17, 14].

4 Methodology and Results

In the following section the methodology for ELSM for topology optimisation us-
ing the MAM is proposed. Results for a simple linear static topology optimisation
benchmark case – Michell single load – are presented.

4.1 Parameterisation

The proposed methodology is an Explicit Level Set representation for topology
optimisation – where the function values obtained at the Design of Experiment
(DoE) points are used to build a metamodel that represents the Level Set Function
(LSF). The parameterisation process involves an initial DoE within the LSF design
space, that remains the same for all sets of design variables, and a metamodel build
with respect to each set of design variables.

4.1.1 Design of Experiments

Capturing the LSF efficiently is paramount to this methodology – as the number of
DoE points used represents the number of design variables within the optimisation
process (MAM). Thus, an effective space-filling DoE should be established. To
achieve this, this work uses a DoE obtained by a permutation Genetic Algorithm
(GA) [64]. The permutation GA is coupled with an Optimum Latin Hypercube
DoE. This principle refers to the distribution of DoE points in each dimension
being separated by uniform intervals, with only one DoE point positioned at each
interval – illustrated by Figure 7.

The optimisation problem the genetic algorithm solves is the minimisation of
an Audze-Eglais objective function. This function represents a physical anal-
ogy: points within the domain exert repulsive forces on each other representing a
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Figure 7: Design of Experiments via the Permutation Genetic Algorithm for 20
points in two-dimensions, displaying the Latin Hypercube distribution
and pseudo-potential energy acting as a repulsive force

pseudo-potential energy, U . It can be mathematically expressed as

minU = min
P∑

p=1

P∑
q=p+1

1

L2
pq

, (15)

whereLpq is the distance between points p and q, for a system containing P points.
The term ‘permutation’ refers to the rearrangement or change of order of exist-
ing elements – this is preferable for DoE application as it can be used to satisfy
Optimum Latin Hypercube criteria. Although Genetic Algorithms are expensive
when using large numbers of design variables they have desirable properties when
working with (1) binary-based problems, and (2) populations of points. However,
within this work, the DoE that describes the LSF is only required to occur once,
at the very beginning of the algorithm. Thus, the computational expense can be
accepted in return for an optimally distributed DoE, which in-turn reduces the cost
of the optimisation procedure by reducing the number of design variables required
to produce a LSF metamodel of sufficient quality [65, 64, 66].

4.1.2 Level Set Function metamodel

The LSF metamodel is built using the Ordinary Kriging method [67, 68] – a spa-
cial correlation-based technique that builds an interpolating metamodel. The ap-
proximated Kriging metamodel, f ′(x), is built from an estimated mean, µ̂, deter-
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mined by a weighted least squares problem, and an error term, ϵ(x),

f ′(x) = µ̂+ ϵ(x). (16)

Kriging runs on the underlying assumption that experiment point data is deter-
ministic, and approximation errors only exist due to missing terms in the model.
Additionally, Kriging assumes the error is continuous for a continuous function.
The error, ψ, between two points (i & j) is assumed to be correlated with their
distance, and (in this work) modelled as Gaussian basis functions

ψ(xi,xj) = exp

[
n∑

k=1

−θ(k)
(∣∣∣∣∣∣x(k)

i − x
(k)
j

∣∣∣∣∣∣)2] , (17)

where x denotes the location of a point and θ and k are tuning parameters. The er-
ror models between an evaluation point, e, and all experiment points (i = 1, ..., p)
are used to build the vector, r,

r(xe,xi) =

ψ(xe,x1),
...

ψ(xe,xp)

 . (18)

The error term for any experiment point, ϵi, is calculated from a stochastic process,
described as

ϵ(xi) = wTr, (19)

where w denotes a matrix comprised of the weights for each experiment point
basis function r. The weights, w, are calculated from the estimated spacial corre-
lation (ψi) of all training points, and the function values of each experiment point
[69].

Kriging acts as an exact interpolator, which is attractive in deterministic simu-
lation [70, 3]. It can be noted that Kriging loses it’s computational efficiency when
approaching problems with several thousand DoE points [71], however, such num-
ber of design variables is far beyond the scope of the proposed methodology.

4.2 Mechanical modelling

Erzatz material [72, 35], also known as element material fraction [73] and a den-
sity field [74, 30], is a method for mapping and discretising the mechanical model
simultaneously. A fixed regular grid is used for the discretised grid, where a
pseudo-density value is used to denote the fraction of material present in each
element. This method is the most commonly used in the literature, motivated by
its ease of implementation and efficiency.

This investigation opted for an Ersatz material mechanical model. This was
due to the likelihood of material becoming disconnected when a mesh does not
encompass the entirety of the domain. The Ersatz material density values are
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Figure 8: Smoothed Heaviside function with β values of 1 (top) and 10 (bottom),
displaying the resulting level set cut and material domain

Figure 9: Parameterisation of a surface function as an Ersatz material model
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calculated using a series of integration points throughout the mesh. Where each
element consists of a set (S) of: 4, 9 or 16 integration points – shown in Fig.
10. The integration points evaluate the function value of the LSF, ϕ(x), and the
pseudo-density element value is calculated as the mean value of each element’s
respective integration points, as

ρi
(
ϕ(x)

)
=

∑
j∈Si

ϕj(x)∑
j∈Si

1
, (20)

where ϕ(x) ∈ [0, 1], and ρi denotes the ith element’s pseudo-density value.

4.3 Update procedure

The update procedure for the proposed method is driven by the MAM, as dis-
cussed in Section 3. Each DoE point within the MAM’s trust regions denotes a
set of design variables that are used to build the LSF, and thus describe the topo-
logical configuration.

Using the contours from the Level Set cut to map the geometry, it is common at
the initial stages of the MAM for the DoE points to provide topological configu-
rations that do not produce material on the regions where boundary conditions are
applied; or if material is present in these regions, it is disconnected from the rest
of the structure. This results in poorly formulated topology optimisation problems
that are not properly constrained, causing the topology to not satisfy static equi-
librium conditions, i.e. in motion. In such instances, the objective function cannot
be calculated. The MAM can handle such DoE points by assigning an artificially
large objective response, but still calculating any other response values that are
available (e.g. the volume fraction). This information provides the trust region
metamodel with the data to move away from these instances – thus, after the first
few iterations they become infrequent enough not to hamper the optimisation pro-
cess. However, this method is not computationally efficient, as an artificially large

Figure 10: Element integration point locations for: 4 (left), 9 (centre), and 16
(right)
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objective function can encourage convergence to local minima. The Ersatz mate-
rial model overcomes this limitation by introducing a minimum element density,
thus, all resultant models are feasible to solve for the response. This motivated the
choice of an Ersatz material model within this research.

The MAM trust region strategy utilises a parameter that is the minimum ac-
ceptable number of DoE points within a trust region. This is to ensure the trust
region has sufficient data for the current optimisation problem. The MAM will
first check if any existing DoE points are present within the trust region and in-
clude them, counting them towards the total number of DoE points within the
trust region. The trust region is then populated with the remaining number of DoE
points required to make the minimum acceptable number.

4.4 Regularisation

Schemes to manipulate the optimisation problem to create a well-posed problem
are known as regularisation. Regularisation can be performed at any stage in the
Level Set Method. In this work, a smoothed Heaviside function is used to reduce
intermediate values within the LSF. In doing so, this creates steep gradients on the
walls of the LSF, providing a clear indication of the where the level set is cut, and
thus the material-void boundary will lie. The Level Set Function transformed by
the smoothed Heaviside function, Ĥ , can be described as

ϕ̄ = Ĥ(ϕ) =
tanh(βη) + tanh(β(ϕ− η))

tanh(βη) + tanh(β(1− η))
(21)

where β and η are coefficients that control the sharpness of the projection, as
shown in Figure 8. In this work, the value of β is linked to the size the of the
trust region. The value of β increases linearly from an initial value of 1, at the
initial trust region size, to a final value of 10, at the final trust region size. This
is performed to ensure that by the end of the optimisation process the LSF has
clearly defined boundaries.

Density filtering schemes can be implemented to impose a relationship wherein
the density of an element is dependent on distances to surrounding elements and
their respective densities. Surrounding elements are considered within a given
radius. A set of elements, N , can be expressed as

Ni = j : d(i, j) ≤ R, (22)
where d(i, j) = ||xi − xj||, (23)

for a given point (i) within a neighbourhood bounded by the radius, R. The aug-
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mented density (ρ̃) value for the given point is calculated as

ρ̃i =

∑
j∈Ni

w
(d)
ij vjρj∑

j∈Ni

w
(d)
ij vj

, (24)

where w
(d)
ij =

{
f
(
d(i, j)

)
for j ∈ Ni,

0 for j /∈ Ni,
(25)

v denotes the volume of an element, and w(d)
ij is the distance-dependent weight.

This formulation produces the condition that∑
j∈Ni

wij = 1 ∀ i, (26)

which is consistent for the weighting functions explored in this work [75].
A Gaussian distribution can be utilised to provide a smoothed nonlinear weight-

ing function in the shape of a bell-curve. The Gaussian exponential function is
mathematically described by

w
(d)
ij = exp

(
−1

2

(
d(i, j)

σd

)2
)
, (27)

where σd denotes a scaling constant, with a value commonly set to be R/2, and
R/3 – in this work R/3 is used.

Density-based weight functions can be incorporated to determine a relationship
between the density of the point being considered and that of the points within a
given neighbourhood: wherein the less the change in the density, the greater the
weight of the function. The Bi-lateral Density Filter was introduced by [76], the
filtering scheme utilises a distance-based and density-based weight function. This
can be mathematically expressed as

ρ̃i =

∑
j∈Ni

w
(d)
ij w

(ρ)
ij vjρj∑

j∈Ni

w
(d)
ij w

(ρ)
ij vj

, (28)

wherew(ρ)
ij denotes the density-based weight function. The distance-based weight-

ing is calculated via the Gaussian distribution introduced above. The density-
based weights, too, are calculated using a Gaussian distribution, as

w
(ρ)
ij = exp

(
−1

2

(
||ρi − ρj||

σρ

)2
)
, (29)
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where w(ρ)
ij = 0 ∀ j /∈ Ni, and σρ denotes a scaling constant that ∈ [0, 1]. The

greater the value of σρ, the less the weight of the filter and, thus, the greater
the region of intermediate densities [75]. A value of 0.5 has been used for σρ
in this work. Another scheme implemented to regularise the optimisation prob-
lem is a re-initialisation of the trust region throughout the optimisation process.
This is performed due to the highly non-convex data present in topology optimisa-
tion problems which can lead to convergence to local minima. Re-initialising the
problem can guide the trust region effectively regardless of it’s starting position.
When the trust region becomes sufficiently small, the trust region size is restarted
(rrestart) to the initial size, r0, but multiplied by a reduction coefficient, τrestart, as

rrestart = r0τ
N
restart (30)

where N denotes the number of times the trust region has been restarted. The
re-initialisation scheme is included into the trust region strategy by checking the
best response before restart, and comparing to the best response from the prior
restart. If difference between the responses is less than a small tolerance of each
other, the restart scheme is stopped. Alternatively, if the restart trust region size
becomes smaller than the threshold size to trigger the re-initialisation the scheme
is stopped, and the trust region strategy proceeds as normal.

4.5 Michell single load benchmark

The method proposed in this work is applied to a two-dimensional linear static
structural topology optimisation problem – Michell one-load. The Michell bench-
mark problem was initially formulated as a truss optimisation problem that could
be analytically solved. This has lead to the extensive use of Michell structure-
based problems in topology optimisation benchmarking [77, 78].

It should be noted that although it is common practice to use the terminol-
ogy ‘optimal’ within the structural optimisation community, that two-dimensional
topology optimisation Michell problems do not effectively demonstrate the opti-
mal configuration of material in three-dimensional space. Instead, the material
distribution should be a closed wall structure with a variable topography [77].
However, two-dimensional solutions can serve as an effective influence to such
reinforcement patterns.

The Michell one load benchmark case for topology optimisation (displayed in
Figure 11) simulates a centrally loaded beam via imposing boundary conditions
that act as a line of symmetry. It is an effective problem for testing topology
optimisation techniques, as it requires the material to be connected and in contact
with both constraints in order to satisfy static equilibrium conditions. The material
used for the benchmark is steel ASTM A-36, in accordance with the benchmark
data for topology optimisation performed by Valdez et al. [79] with the required
data presented in table 4.
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Figure 11: Michell benchmark topology optimisation problem

Parameter Value

Domain x× y (m) 1×1
L (m) 0.1
P1 (N) −5.6× 104

Young’s Modulus (Pa) 2.11× 109

Poisson’s ratio 0.29
Material density (kg/m3) 7874

Table 4: Michell single load benchmark problem set up
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4.5.1 General Problem Formulation

The general problem formulation is to minimise the compliance, c, (i.e. achieve
maximum global stiffness), with a constraint on the volume fraction, V , set to be
50% (V̄ = 0.5). This optimisation problem can be expressed as

minimise: f(x) = c
(
ρ(x)

)
= F TU, x,ρ ∈ Rn, (31)

subject to: gV (ρ) =

∫
Ω

fdV =

p∑
e=1

ρe ≤ V̄ , e = 1, . . . , p, (32)

w.r.t.: xi ≤ xi ≤ xi, i = 1, . . . , n, (33)

where F and U are the load and displacement vectors, respectively. The design
variables, x, exists within limits, set to be [xi, xi] = [0, 1]. The LSF domain (Ω)
size is defined in Table 4, where the limits are [0, 1] in both dimensions.

The problem is composed of a set of elements, e, each with a respective density
value, ρe, where e = 1, . . . , p, and 0 ≤ ρ ≤ 1. As the density of such elements
serve as a fraction of the material present in this region, the sum of the elements’
density values equates to the effective volume fraction for the domain.

The optimisation problem can be further developed to consider another con-
straint with respect to the quantity of element densities in an intermediate region
– this will be referred to informally as the discreteness constraint. The discrete-
ness constraint (gD) is a function of the density of the elements, where elements
with density values in the intermediate regions of the density limits have a greater
value. This can be mathematically described as

gD(ρ) =

p∑
e=1

− sin(πρe − π
2
)2β + 1

p
≤ D̄ (34)

where p denotes the total quantity of elements (e) in the domain, and β is a penal-
isation parameter that influences the size of the intermediate density region. The
discreteness constraint limit, D̄, is investigated through this work, but a common
value used for the constraint is 0.2.

4.5.2 Multipoint Approximation Method Problem Formulation

The MAM framework is formulated as a series of optimisation sub-problems –
the trust region metamodels. This involves reformulating the general optimisation
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problem as

minimise: f̃ (κ)
(
ρ(x)

)
, x,ρ ∈ Rn, (35)

subject to: gV (ρ) ≤ V̄ , (36)
gD(ρ) ≤ D̄, (37)

w.r.t.:

A
(κ)
i ≤ xi ≤ B

(κ)
i ,

A
(κ)
i ≤ Ai,

B
(κ)
i ≤ Bi,

 i = 1, . . . , n, (38)

where f̃ (κ) denotes the approximated response function by the metamodel, at
iteration, κ. A(κ)

i and B(κ)
i respectively denote the trust region lower and upper

limits for each design variable, i. The relative trust region size, r, at each iteration
can be calculated by

r(κ) =
1

n

n∑
i=1

∥B(κ)
i − A

(κ)
i ∥

∥B(1)
i − A

(1)
i ∥

. (39)

4.5.3 Post-Processing

A scheme is implemented in this method’s framework to further refine the topol-
ogy optimisation results. This scheme can be thought of as post-processing -
although it is a part of the algorithm - but occurs when the initial topology opti-
misation problem converges. The post-processing involves introducing a new set
of design variables to act as the Euclidean coordinates of the DoEs that build the
LSF. Theoretically, by enabling the DoEs points to ‘move’ in the domain space,
they have a greater capacity to shape the contours of the topology defined by the
Level Set cut. The design variables of the optimisation problem are concatenated
as

s = {x||y||z} = {x1, ..., xn, y1, ..., yn, z1, ..., zn}, (40)

where y and z denote the two-dimensional Euclidean coordinates for each respec-
tive design variable’s DoE point. The design variables from the initial optimisa-
tion problem, x, are set to have the value of the optimum solution, x∗; the new
design variables are set to have starting values of the DoE coordinates from the
prior optimisation problem. The optimisation problem can be reformulated using
the new set of design variables, s.

4.6 Results

The starting postion of an optimisation problem is an important feature to be con-
sidered. It can heavily influence the likelihood of convergence to a local minimum.
The starting postion of the optimisation method LSMs corresponds to the initial
LSF used.

24



Figure 12: Initial LSF for a variable number of holes, where (a)-(h) respectively
correspond to a set of {1, 4, 9, 16, 25, 36, 49, 64} holes

In this study, a variable quantity of holes within the initial LSF and how this in-
fluences the solution of the optimisation problem is examined. Figure 12 presents
the initial function used to calculate the design variable values that build the initial
LSF. Figure 13 displays the topological configuration produced by the solution of
the optimisation problem, wherein (a)-(h) correspond to the initial functions in
Fig. 12.

The results of the study, presented in Tables 5 & 6, show that the initial con-
figuration of the LSF does influence the likelihood of convergence to a local min-
imum using the proposed method. Where plot (a) of Fig. 13, that corresponds to
an initial LSF with one hole, suffers significantly from this initial configuration.
However, beyond this, the initial configuration has a reduced significance. The
best solution was produced by the problem with an initial LSF that has 9 holes,
closely followed by the solution produced by 64 holes – presented in plots (c) &
(h). Both solutions resemble a Michell structure like configuration, with the same
quantity of truss-like members.

5 Summary and conclusions

The work done in this research looked to develop a method to realise topology
optimisation solutions without the requirement of sensitivity analysis and using
relatively few design variables. This was motivated by the suitability of use for
the method developed – the MAM4TO – to be applied to problems considering en-
gineering disciplines where sensitivites are not available (such as crashworthiness
and electromagnetics). The MAM4TO was developed using an Explicit-LSM
parameterisation – where the design variables directly correspond to the basis
functions used to build the LSF. This was coupled with an Ersatz material model,
where the LSF was projected onto the discretised grid as pseudo-density values.
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Figure 13: Solutions corresponding to the initial functions presented for in Fig.
12, using the baseline optimisation problem with a Bi-lateral filter and
filter radius of 0.05 and 50 desgin variables

Holes f(x0) gV (x0) gD(x0) f(x
(∗)
κ ) gV (x

(∗)
κ ) gD(x

(∗)
κ ) κ

1 0.2126 0.7414 0.4757 0.5323 0.5020 0.2002 151
4 0.2140 0.7157 0.6074 0.2770 0.4998 0.1991 136
9 0.2637 0.5759 0.9158 0.2589 0.4998 0.1986 135
16 0.2531 0.6362 0.9018 0.3156 0.4999 0.1928 116
25 0.3825 0.4971 0.9355 0.2699 0.4999 0.1990 111
36 0.5068 0.5616 0.8949 0.2672 0.4999 0.1945 108
49 0.2154 0.6708 0.8108 0.2826 0.4999 0.1993 121
64 0.2389 0.6582 0.7926 0.2655 0.4996 0.1999 124

Table 5: Solutions to the initial optimisation problem for a variable quantity of
holes in the initial LSF

Holes f(s
(∗)
κ ) gV (s

(∗)
κ ) gD(s

(∗)
κ ) κ ∆f (∗)(%) ∆g

(∗)
V (%) ∆g

(∗)
D (%)

1 0.5795 0.5001 0.1984 50 8.8580 -0.3828 -0.8954
4 0.2709 0.4998 0.1995 39 -2.1996 -0.0123 0.1688
9 0.2589 0.4999 0.1998 44 0.0374 0.0300 0.5972
16 0.3041 0.4999 0.1992 48 -3.6311 0.0033 3.2998
25 0.2634 0.5000 0.1988 49 -2.3968 0.0249 -0.1254
36 0.2822 0.4998 0.2000 49 5.6353 -0.0117 2.7976
49 0.2739 0.5000 0.1966 39 -3.0922 0.0172 -1.3547
64 0.2594 0.4998 0.1997 35 -2.3158 0.0473 -0.0671

Table 6: Comparison of the initial and post-processing optimisation solutions for
the problems presented in Fig. 13 and Table 5.
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The update proceedure was achieved using the MAM TRS.
A methodology of techniques to regularise the topology optimisation procee-

dure was presented – wherein a study on the influence of such techniques was
then performed. The results examined the performance using a benchmark topol-
ogy optimisation problem, the Michell single load problem. The results achieved
are in accordance with those presented in the literature. However, certain deci-
ficies were highlighted in elements of the MAM4TO method where numerical
instabilities became present in larger optimisation problems.

The results achieved in this work presented that the solutions produced by the
MAM4TO benefited from the inclusion of a post-processing stage in the opti-
misation process. During this stage, the basis functions used to build the LSF
metamodel are endowed with the capacity to move within the design domain.
This aided the refinement of the topological configurations produced by the initial
stage of the optimisation process (wherein the basis functions are static). Further-
more, the presence of a discreteness constraint was seen to considerably benefit
the optimisation solutions, by encouraging the design variables to converge to near
discrete values – therein reducing the presence of intermediate density material.
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