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Abstract

This contribution is focused on numerical determination of factors of safety within
slope stability assessment and other applications. The limit load and the shear strength
reduction methods are considered, combined with the Mohr-Coulomb plasticity and
the finite element method. To suppress spurious numerical oscillations observed for
nonassociated plastic models, Davis’ modifications of the limit load and the shear
strength reduction methods are considered. To suppress numerical overestimation of
the factors of safety, a special continuation technique is suggested and its convergence
with respect to a spatial discretization parameter is discussed. The paper also contains
many useful details to this problematic which are explained on an algebraic level to
be easily understandable.

Keywords: stability assessment, factor of safety, computational plasticity, finite ele-
ment method, Newton-like methods, continuation techniques.

1 Introduction

Factors of safety (FoS) and failure zones of structures are investigated within stabil-
ity analysis of structures in civil engineering and geotechnics by various analytical
or numerical methods. We focus on the limit load (LL) and shear strength reduc-
tion (SSR) methods, their connections with elasto-plasticity and displacement-type
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finite elements. Briefly speaking, these methods are based on a parametrization of the
elasto-plastic problem by a scalar factor. A critical value of the factor defines FoS. In
the LL method, external forces are enlarged by the factor while in the SSR method,
strength parameters are reduced. Although such approaches are well-known, several
numerical difficulties may appear.

First, spurious numerical oscillations are sometimes observed for nonassociated
plastic models [1,2] and they cause the nonuniqueness of FoS or a failure mechanism.
To prevent this drawback, we build on Davis’ modifications of the LL and SSR meth-
ods [1, 3–5]. The idea is to approximate the nonassociated plasticity with a sequence
of associated plastic models. The approximation is straightforward in the LL method
unlike the SSR method where an iterative procedure is recommended.

Second, FoS may be overestimated or strongly dependent on mesh density. This
mainly occurs if the simplest linear finite elements are considered. Therefore, higher-
order finite elements (e.g. quadrilateral elements) are recommended in many com-
mercial codes. However, such a treatment can be too slow for 3D problems. A more
rigorous approach builds on mesh-independent optimization problems related to the
(modified) LL and SSR methods. The optimization framework for the LL method is
well-known for many decades and is called the limit analysis (LA) problem [6, 7]. In
engineering literature, we distinguish lower and upper bound limit analysis theorems
defining lower and upper bounds of FoS, see [3] and the references therein. Recently,
the optimization approach was extended to the modified SSR method [2, 5]. There
exist convergence results with respect to the discretization parameters which enable
us to suppress the overestimation of FoS [7–9]. In addition, various mesh adaptive
strategies were developed [2, 3, 5, 10].

In this contribution, the modified LL and the SSR methods are introduced for the
Mohr-Coulomb elastic-perfectly plastic problem. Then, these methods are investi-
gated on an algebraic level in order to transparently define convenient numerical al-
gorithms. We build on continuation techniques which are closely related to regular-
ization of the optimization framework. We also present a methodology enabling to
prevent the overestimation of FoS.

2 Discretized elastic-plastic problem and its parametriza-
tions

Elasto-plastic problems after time and space discretization are often defined in terms
of displacements and have the following scheme:

find u∗ ∈ Vh :

∫
Ω

T (ε(u∗)) : ε(u)dx = b(u) ∀u ∈ Vh, (1)

where Vh is a finite-dimensional space of admissible displacements, ε is the infinites-
imal strain tensor, that is, ε(u) = 1

2

(
∇u+ (∇u)T

)
, the functional b represents

the work of external forces (e.g., a combination of volume and surface forces) and
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T : ε 7→ σ is a nonlinear constitutive operator which maps the strain tensor into the
Cauchy stress σ. If an elastic-perfectly plastic model is considered then this mapping
can be defined as follows [11, 12]:

Given ε, εp ∈ R3×3
sym, find σ ∈ R3×3

sym, µ ∈ R3×3
sym and γ ∈ R satisfying:

σ = De(ε− εp − γν), ν ∈ ∂g(σ),

γ ≥ 0, f(σ) ≤ 0, γf(σ) = 0.

}
(2)

Here, εp denotes the plastic strain tensor obtained in the previous time step, γ is the
plastic multiplier, De is the fourth-order elastic tensor representing the Hooke’s law,
f, g are given convex functions representing a yield criterion and a plastic potential,
respectively, ∂g(σ) denotes the subdifferential of g at σ and ν is an element belonging
to ∂g(σ). If g is differentiable at σ then ∂g(σ) is a singleton and one can simply write
ν = ∂g(σ)/∂σ as is usual in engineering literature. The operator T : ε 7→ σ defined
by (2) is not differentiable everywhere but its generalized derivative exists and will be
denoted as T o. Its knowledge is important for Newton-like solvers of the elasto-plastic
problem.

The limit load (LL) method means that the problem (1) is parametrized by a scalar
factor t ≥ 0 which multiplies the load vector b. The factor of safety (FoS) is defined
as a maximal value of t for which the parametrized problem has a solution. So we
see that the LL method is very universal and can be applied for various elasto-plastic
models.

To introduce the shear strength reduction (SSR) method and Davis’ modifications
of the LL and SSR methods, we shall consider an isotropic material and the Mohr-
Coulomb (MC) model, for the sake of simplicity. Then, we have 5 material param-
eters: the bulk modulus, K, the shear modulus, G, the (effective) cohesion, c, the
(effective) friction angle, ϕ, and the dilatancy angle, ψ. Further,

Deε = (K − 2G/3)(tr ε)I + 2Gε,

f(σ) = (1 + sinϕ)σ1 − (1− sinϕ)σ3 − 2c cosϕ,

g(σ) = (1 + sinψ)σ1 − (1− sinψ)σ3 − 2c cosψ,

where tr ε is the trace of ε, I denotes the unit second-order tensor and σ1, σ3 are the
maximal and minimal principle stresses, respectively. (We use the standard mechan-
ical sign convention where the tension has a positive sign). The construction of the
operators T and T o for the Mohr-Coulomb model can be found e.g. in [11, 12].

Within the SSR method, the strength parameters c, ϕ and ψ are reduced using a
scalar factor λ > 0:

cλ :=
c

λ
, ϕλ := arctan

tanϕ

λ
, ψλ := arctan

tanψ

λ
. (3)

The corresponding FoS is defined as a maximal value of λ for which the parametrized
problem (1) has a solution. The SSR method is conventional in slope stability but not
so universal as the LL method.
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If ψ = ϕ then f = g and we talk about the associated MC model with clear
mathematical theory based on an optimization background presented below. However,
in geotechnics, the non-associated MC model with 0 ≤ ψ < ϕ is more usual which
can lead to the numerical difficulties discussed in Section 1.

Davis’ modifications of the LL and SSR methods are based on approximations
of the non-associated MC model with associated ones. Such an approximation was
originally suggested for the LL method (see [3] and the references therein) where the
strength parameters c, ϕ and ψ are modified as follows:

c̄ = βc, ϕ̄ = ψ̄ = arctan(β tanϕ), β :=
cosψ cosϕ

1− sinψ sinϕ
. (4)

The LL method is then applied for the modified values c̄, ϕ̄ = ψ̄ instead of the original
values c, ϕ and ψ. Let us note that the values of c̄ and ϕ̄ are usually lower than c and
ϕ.

The Davis approach can be extended to the SSR method [1, 4]. In particular, the
strength parameters c and ϕ are modified for any factor λ > 0. A general scheme of
the modified SSR method was introduced in [5]:

c̃λ :=
c

q(λ;ϕ, ψ)
, tan ϕ̃λ = tan ψ̃λ :=

tanϕ

q(λ;ϕ, ψ)
, (5)

where q is a scalar function satisfying:

• q is positive and continuous for any λ > 0 and any ϕ, ψ such that 0 ≤ ψ ≤ ϕ;

• q is increasing with respect to the variable λ ≥ 0;

• q is non-increasing with respect to the variable ψ ∈ [0, ϕ];

• q(λ;ϕ, ψ) ≥ λ for any λ ≥ 0 and any ϕ, ψ such that 0 ≤ ψ ≤ ϕ;

• if ψ = ϕ then q(λ;ϕ, ψ) = λ.

The following three examples of the function q with the above-mentioned properties
were introduced and analyzed in [5]:

qA(λ;ϕ, ψ) = λ
1− sinψ sinϕ

cosψ cosϕ
,

qB(λ;ϕ, ψ) = λ
1− sinψλ sinϕλ
cosψλ cosϕλ

, ϕλ = arctan
tanϕ′

λ
, ψλ = arctan

tanψ′

λ
,

qC(λ;ϕ, ψ) =

{
λ 1−sinψ sinϕλ

cosψ cosϕλ
, if ϕλ ≥ ψ,

λ, if ϕλ ≤ ψ,
ϕλ = arctan

tanϕ′

λ
.

These functions correspond to the Davis A, B and C approaches suggested in [4].
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With respect to the Davis modifications of the LL and SSR problems, we shall con-
sider from now on only the associated model with f = g in (2). Under this assumption,
the operator T : ε 7→ σ defined by (2) has the following potential [5]:

ΨT (ε) = max
τ , f(τ )≤0

[
τ : (ε− εp)− 1

2
D−1
e τ : τ

]
. (6)

Here, the Cauchy stress σ maximizes the functional on the right-hand side subject to
the constraint f(τ ) ≤ 0. In addition, ∂ΨT (ε)

∂ε = T (ε) = σ. The potential enables us
to introduce an optimization definition of the elasto-plastic problem, see Section 3.

Finally, we also need to consider the following local dissipation function related to
the elasto-plastic constitutive problem:

Ψ∞(ε) = sup
τ , f(τ )≤0

[τ : ε] .

The supremum is used here instead of the maximum because the case Ψ∞(ε) = +∞
can occur for some ε. The dissipation potential enables us to introduce an optimization
definition of the LL and SSR methods, see the next sections.

3 The modified LL method in an algebraic form

From now on, we shall work only with the algebraic setting of the problem (1), for the
sake of simplicity:

find u∗ ∈ Rn : F (u∗) = b, F : Rn → Rn, b ∈ Rn, (7)

where u∗ is the unknown displacement vector and the nonlinear function F can be
assembled from the integral ∫

Ω

T (ε(u)) : ε(v)dx.

Similarly, we introduce other algebraic functions F o : Rn → Rn×n, I : Rn → R and
I∞ : Rn → R ∪ {+∞} corresponding to the above-mentioned constitutive operators
T o, ΨT and Ψ∞, respectively. That is, ∇I(u) = F (u) and ∇F (u) = F o(u) if F
is differentiable at u. From the mathematical point of view, one can expect that the
function F is Lipschitz continuous and strongly semismooth. Therefore, the following
semismooth Newton method can be used and has local quadratic convergence:

uk+1 = uk + [F o(uk)]−1(b− F (uk)) , k = 0, 1, . . . , u0 − given.

Further, using the function I, one can introduce the following minimization problem,
which is equivalent to (7):

J (u∗) ≤ J (v) ∀v ∈ Rn, where J (v) = I(v)− b⊤v. (8)
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From the mathematical point of view, I is a convex function having a linear growth at
infinity. It implies that the function J has a minimum if the load vector b is sufficiently
small.

The modified LL method provides more accurate information about the solvability
of (7) or (8). It suffices to parametrize the problem (7) using a scalar load factor t ≥ 0:

for any t ≥ 0, find û(t) ∈ Rn : F (û(t)) = tb. (9)

The limit load factor will be denoted as t∗ and is naturally defined by

t∗ = maximum of t ≥ 0 such that the solution û(t) of (9) exists. (10)

More precisely, ”supremum” instead of ”maximum” should be used in (10) because
the system (9) often does not have a solution for t = t∗. The case t∗ = +∞ can
also occur in some extreme cases, for example if the friction and dilatancy angles are
greater than 45 degrees. It is worth noticing that the original system F (u∗) = b has a
solution if t∗ > 1.

The limit load factor t∗ can also be defined by the limit analysis problem [6, 7]:

t∗ = inf
v∈Rn

b⊤v=1

I∞(v) = min
v∈C
b⊤v=1

I∞(v), (11)

where I∞ is the dissipation function and C = {v ∈ Rn | I∞(v) < +∞} is the cor-
responding feasible set. This ”hidden” constraint depends on a chosen yield criterion.
From the optimization definition (11), we see that any feasible v defines an upper
bound of t∗. Therefore, we talk about the upper bound theorem of limit analysis in
engineering practice.

These two definitions of t∗ are equivalent and for purposes of this paper it is useful
to briefly derive it. For more details, we refer to [8–10, 13–15]. We start with the
following relationship between the functions I∞ and I:

I∞(v) := lim
ω→+∞

Iω(v) ∀v ∈ Rn, where Iω(v) =
1

ω
I(ωv), ω > 0. (12)

Hence, we see that I∞ can be regularized by the smooth function Iω which is finite-
valued everywhere and can be easily derived from the original function I. For any
regularization parameter ω > 0, one can define the following auxiliary problem:

Iω(v(ω)) = min
v∈Rn

b⊤v=1

Iω(v). (13)

This problem can be transformed by substitution into the following one:

I(ū(ω)) = min
v∈Rn

b⊤v=ω

I(v), (14)

where v(ω) = ū(ω)/ω. Analyzing the optimality conditions for (14) we arrive at the
following saddle-point system for given ω > 0:

find ū(ω) ∈ Rn, t(ω) ≥ 0 : F (ū(ω)) = t(ω)b, bT ū(ω) = ω. (15)
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Figure 1: Control of the loading process through the work of external forces.

It holds that the system (15) has always a solution unlike the original system (9).
Further, comparing the solutions of the systems (15) and (9), we see that

ū(ω) = û(t(ω)).

Finally, it holds that
t(ω) ≤ t∗, lim

ω→+∞
t(ω) = t∗

as is sketched in Figure 1.
We see that the additional variable ω represents a prescribed value of the work of

external forces and that the loading process can be controlled indirectly through ω
instead of the simplest increasing of the parameter t. One can introduce the following
continuation method for the construction of the function ω 7→ t(ω):

1. Generate (adaptively) a sequence 0 < ω1 < ω2 < . . . < ωN .

2. For any j = 1, 2, . . . , N , solve the system (15) and find its solution ū(ωj) ∈
Rn, t(ωj) ≥ 0.

3. Approximate t∗ by t(ωN) where ωN is sufficiently large.

We complete this algorithm with the following remarks (recommendations):

• We start with a constant increment of ω. Its convenient value can be estimated
e.g. using the external work bTu∗el of the elastic solution satisfying Kelu

∗
el = b.

• The increment of ω is enlarged (e.g. twice) if the corresponding increments of t
are smaller than a prescribed tolerance (e.g. 10−3).

• If the increments of ω are enlarged several times (e.g. 5 times) then the algo-
rithm is terminated.

• It is natural to approximate t∗ by t(ωN). However, to prevent possible numerical
overestimation of t∗, it is important to store the whole curve ω 7→ t(ω) as is
explained in Section 5.
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• Similar continuation techniques are also known from literature. For example,
the loading process can be controlled by a displacement at a selected point (see
e.g. [12]) or by the arc-length method [11, 16].

Finally, we introduce the Newton-like method with damping for solving the mini-
mization problem (14) for a fixed ω:

uk+1 := uk + αks
k k = 0, 1, . . . , u0 − given, b⊤u0 = ω, (16)

sk = arg min
s∈Rn

b⊤s=0

[
1

2
(F o(uk)s, s) + (F (uk), s)

]
, (17)

αk = arg min
α∈[0,1]

I(uk + αsk). (18)

The following remarks provide more details to this algorithm:

• This method can also be interpreted as a sequential quadratic programming. The
quadratic functional in (17) approximates I using the Taylor expansion.

• The initial vector u0 is achieved by extrapolation from previous two solutions
ū(ωj−1) and ū(ωj−2) corresponding to smaller values of ω than the current one.

• The sequence {uk}k generated by this algorithm satisfies b⊤uk = ω.

• The vector sk is a descent direction of I. The minimization problem (17) defin-
ing sk can be transformed to the following system of linear equations:

find sk ∈ Rn, tk ≥ 0 : F o(uk)sk = tkb− F (uk), bT sk = 0. (19)

The solution component tk is used for approximation of t(ω). This system can
be solved by superposition applied on F o(uk)sk = tkb − F (uk). In particular,
we consider the following split of sk within the superposition:

sk = vk + (tk − t0,k)w
k, (20)

where t0,k is given and

F o(uk)vk = t0,kb− F (uk), F o(uk)wk = b. (21)

It is easy to verify that (sk, tk) solves (19) if (20)–(21) hold. Further, we see that
two linearized systems of equations with the same stiffness matrix F o(uk) are
solved in each Newton’s iteration. The additional parameter t0,k can be chosen
arbitrary, for example, one can set t0,k = tk−1. The reason of this parameter is to
reduce rounding errors within the computation of sk because the matrix F o(uk)
can be ill-posed for higher ω.

• If we observe that the matrix F o(uk) is almost singular then we replace it with
its regularization in the form (1− β)F o(uk) + βKel, where β ∈ (0, 1) and Kel

is the elastic stiffness matrix.
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• The damping parameter αk is important for global convergence of the algorithm
because its presence guarantees that I(uk+1) ≤ I(uk) for any k = 0, 1, . . ..
Notice that it is not necessary to evaluate the function I if (18) is solved.

• Global convergence and local superlinear convergence of this algorithm was
analyzed in [14]. We usually observe the superlinear convergence in vicinity
of the solution. In addition, it is possible to extend this algorithm for contact
problems of elasto-plastic bodies, see [13, 14].

4 The modified SSR method in an algebraic form

To define the modified SSR method on the algebraic level, we arise from the system
(7) and parametrize the function F using the factor λ introduced in Section 2:

find ũ(λ) ∈ Rn : Fλ(ũ(λ)) = b, (22)

Let us note that Fλ = F if λ = 1. We shall also consider functions F o
λ , Iλ and

I∞,λ corresponding to the functions F o, I and I∞ introduced in Section 3. Then the
minimization formulation of the problem (22) reads

Jλ(ũ(λ)) ≤ Jλ(v) ∀v ∈ Rn, Jλ(v) := Iλ(v)− b⊤v. (23)

The safety factor λ∗ for the SSR method can be defined as follows:

λ∗ = maximum of λ > 0 such that the solution ũ(λ) of (22) exists. (24)

To find λ∗ one can straightforwardly increase λ by the following algorithm:

Algorithm SSRM

1. Initialization: Set, e.g., λ0 = 0.8, δλ1 = 0.05, δλmin = 0.001, k = 1

2. While δλk > δλmin:

• Set λk = λk−1 + δλk

• Solve Fλk(ũ(λk)) = b by the semismooth Newton method with damping,
i.e.,

uj+1 = uj+αjs
j, F o

λk
(uj)sj = b−Fλk(uj), αj = arg min

α∈[0,1]
Jλk(uj+αsj)

• If the method does not converge, set δλk := δλk/2, λk := λk−1+ δλk, and
solve the system above again with updated λk. Otherwise, set k := k + 1.
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One can see that the increments δλk are reduced according the convergence of the
semismooth Newton method with damping. Let us complete that the Newton-like
method in Algorithm 4.1 is initiated by the solutions from previous steps and a fixed
number of iteration is prescribed as usual. In addition, if the matrix F o

λk
(uj) is singular

or ill-posed then we regularize it by (1 − β)F o(uj) + βKel, where 0 < β << 1 and
Kel is the elastic stiffness matrix. If this Newton-like method convergences for some
λk then one can expect that λk ≤ λ∗. However, if the opposite is true, we cannot
uniquely decide whether λk > λ∗ or not.

In Section 3, we introduced the limit analysis problem for the LL method using the
cost function I∞. In [5, 17], it was shown that a similar kinematic limit problem for
the SSR method exists and reads as follows:

λ∗ = sup
λ≥0

{λ+G∞(λ)} , G∞(λ) := inf
v∈Rn

[
I∞,λ(v)− b⊤v

]
(25)

where

I∞,λ(v) = lim
ω→+∞

Iω,λ(v), Iω,λ(v) =
1

ω
Iλ(ωv), ∀v ∈ Rn. (26)

Similarly as in Section 3, we derive the relationship between the definitions (25) and
(24) of λ∗ using the regularization parameter ω. For more details, we refer to [5].

To regularize the problem, it suffices to replace the function I∞,λ with Iω,λ. Then,
we arrive at the following approximation of (25) for given ω: find λ(ω) > 0 such that

λ(ω) +Gω(λ(ω)) = max
λ≥0

{λ+Gω(λ)} , Gω(λ) := inf
v∈Rn

[
Iω,λ(v)− b⊤v

]
. (27)

It holds that λ(ω) ≤ λ∗ and limω→+∞ λ(ω) = λ∗, see [5]. Further, if λ < λ∗ then we
have:

Gω(λ) =
1

ω
min
v∈Rn

[
Iλ(v)− b⊤v

]
=

1

ω
min
v∈Rn

Jλ(v) =
1

ω
Jλ(ũ(λ)) =:

1

ω
G1(λ), (28)

where ũ(λ) solves (22) and also (23). Therefore, the value Gω(λ) is inversely propor-
tional to the parameter ω for any λ < λ∗.

The function ω 7→ λ(ω) has analogous properties as the function ω 7→ t(ω)
sketched in Figure 1. We can construct values of this function, for example, as follows:

1. By Algorithm SSRM, construct the sequence λ0 < λ1 < . . . < λN and find the
corresponding solutions ũ(λi), i = 0, 1, . . . , N , of the system (22).

2. Compute the values G1(λi) = Jλ(ũ(λi)), i = 0, 1, . . . , N .

3. Find the values ωi, i = 0, 1, . . . , N , satisfying

λi +
1

ωi
G1(λi) ≥ λj +

1

ωi
G1(λj) ∀j = 0, 1, . . . , N.
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5 How to reduce numerical overestimation of FoS

In previous sections, we presented numerical methods for the determination of the
safety factors t∗ and λ∗ for the modified LL and SSR methods. These safety factors
can be overestimated, especially if lower-order finite elements are considered. The
overestimation of safety factors is undesirable. In this section, we show how to sup-
press it by mesh refinements.

First, it is important to note that the definitions of t∗, t(ω), λ∗, and λ(ω) presented
in Sections 3 and 4 can be extended to an infinite-dimensional functional space as
was shown in [5, 8]. In order to study the dependence of t∗, t(ω), λ∗, and λ(ω) on
the discretization parameter h, we use the notation t∗h, th(ω), λ∗h, and λh(ω) and let
the original notation for the infinite-dimensional functional space. The convergence
lim
h→0

th(ω) = t(ω) hold for any ω > 0 as was proven in [8]. In addition, t(ω) is a lower

bound of t∗. However, the convergence lim
h→0

t∗h = t∗ does not hold, in general, see
Figure 2. It explains the observed overestimation which was documented, for example,
in [18] where a posteriori numerical error analysis was used. Similar convergence
results are expected also for the values λ∗h and λh(ω) on basis of the theoretical results
from [5].
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Figure 2: Convergence results with respect to the parameters h and ω.

From the curves in Figure 2, one can see that the convergence lim
h→0

th(ω) = t(ω) is
faster for smaller values of ω than for higher ones. Therefore, we suggest the following
methodology:

1. Construct the curves ω → th(ω) and ω → λh(ω) for 2-3 finite element meshes
with different densities.

2. Determine the maximal value of ω̄ for which the values th(ω̄) or λh(ω̄) are
almost insensitive of the mesh density. These values are convenient for reliable
estimation of t∗ and λ∗, respectively.

Let us complete that this methodology was successfully tested in [8] for different
perfectly plastic models and the LL method. This methodology has not been tested
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for the SSR method. This is a topic for an ongoing work. For mesh adaptive strategies,
we refer to [2, 3, 5, 10].

In [9], there was introduced another method preventing the overestimation of t∗.
The idea is to truncate unbounded failure surfaces (like the Mohr-Coulomb one) to
be bounded. For bounded sets B (see Section 2), no significant overestimation of t∗

occurs because the convergence lim
h→0

t∗h = t∗ holds.

6 Conclusion

This contribution was focused on reliable computation of safety factors in slope sta-
bility and other applications. We presented the modified limit load and shear strength
reduction methods. We proposed the methodology how to eliminate spurious numer-
ical oscillations and the overestimation of the safety factors. The methodology was
documented on numerical examples with the LL methods in previous author’s work
and will be tested soon for the SSR method.
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