
Abstract

This paper deals with a multilevel model optimization strategy for structural assem-

blies. Two levels are introduced: the full mechanical model and a metamodel. The

general objective is to reduce computation costs; here, we focus on the costs which are

associated with the generation of the metamodel. Our goal is achieved through the in-

troduction of two main elements: what we call a “multiparametric strategy” based on

the LATIN method, which reduces the computation costs when the parameters vary,

and the use of a cokriging metamodel taking gradients into account. Several examples

illustrate the efficiency of these two elements.

Keywords: multilevel optimization, metamodel, cokriging, multiparametric strategy,

LATIN method, assemblies.

1 Introduction

Structural optimization involves two very different domains of expertise: numerical

simulation and optimization. Of the two, simulation is the only one which generates

high computation costs. The main difficulty in the context of optimization is that the

optimizer often requires a large number of simulations to locate the optimum of an

objective function. (In contact and friction problems, these simulations are nonlinear

and, thus, even more costly.) Therefore, new methods for the resolution of complex

optimization problems are needed. This paper presents an optimization strategy based

on multilevel model optimization. In order to reduce computation costs, we introduce

two elements: a cokriging metamodel and a multiparametric strategy.

In the first part of this paper, the context of multilevel model optimization is re-

viewed. In the second part, a specific mechanical resolution process is introduced

and its performance is discussed in detail. The third part concerns the kriging class of
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metamodels. Finally, the last part presents the application of the coupled multiparametric-

metamodel approach to a mechanical test case.

2 Multilevel model optimization

The proposed multilevel model strategy is based on the approach developed in [1].

In our case, we consider the two-level strategy illustrated in Figure 1. The first level

consists in a metamodel defined using a limited amount of data. The zones where the

optimum can be located are determined using, for example, a genetic algorithm. This

information is transferred to the second level, where a precise search of the minimum

is carried out. Therefore, the second level consists in an optimization process based

on the full mechanical model. Two elements contribute to the computation cost: the

construction of the metamodel from the responses of the full mechanical model, and

the direct optimization based on the full mechanical model. Both elements are in-

volved both levels of the multilevel model strategy. Therefore, the strategy proposed

here leads to a reduction in the computation cost of both phases.

Simulator Metamodel
Optimizer

Simulator
Optimizer

Optimization using the metamodel

Direct optimization

Figure 1: The multilevel optimization

The scope of this paper is limited to a study of the cost associated with the genera-

tion of the metamodel. Many types of metamodels can be used to find an approximate

solution: polynomial regression [2], methods based on neural networks [3], radial ba-

sis functions [4], etc... We chose to use a particular category of metamodels called

kriging approximations and, more precisely, a cokriging metamodel using derivatives.

These approximations are presented in Section 4.

3 The multiparametric strategy

3.1 The context

We are considering assemblies of linear elastic structures under the assumption of

small perturbations. The only nonlinearities are considered to be due to contact or
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friction between parts. The strategy we use to solve this type of problem, based on

twenty years of development at LMT-Cachan, relies on an iterative algorithm intro-

duced by P. Ladevève [5, 6].

In the context of assemblies, this strategy consists of 3 steps:

• the structure being studied is divided into substructures and interfaces;

• a dedicated iterative algorithm is used to solve the mechanical problem;

• the operators of the method remain constant and depend neither on the loading

nor on the parameters (friction coefficient, gap) of the interface.

3.2 The resolution process

The resolution strategy, known as the LATIN (LArge Time INcrement) approach, con-

sists of alternative resolutions of two groups of equations. The first group contains the

local equations Γ (which may be nonlinear) related to the interfaces, and the second

group contains the linear equations Ad related to the substructures. The iterations

between the two groups are handled through the use of search directions which are

parameters of the method. This resolution process, shown in Figure 2, leads to the

solution defined as the intersection of spaces Γ and Ad.

Ad

Γ

E− E+

ŝn+1/2

s sn+1 sn

Figure 2: Schematic representation of the LATIN process

Friction and contact problems along with their specific approaches and laws [7] are

part of equation group Γ. The schematic linear representation of Ad is due to the lin-

ear behavior of the substructures. In the context of elastic assemblies, the boundary

conditions (forces Fi and displacements Wi) at each interface i between two sub-

structures are sufficient to define the solution: the internal behavior is the result of

a classical elastic problem. Thus, an approximate solution is described entirely by

s =
⋃

all the interfaces

(Wi,Fi).
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3.3 A method for reducing computation costs

A parametric optimization involves many calculations, each carried out with a differ-

ent set of the parameters of the problem (design variables such as friction coefficients,

preloads, gaps, etc...). This leads to the resolution of many similar problems in the

sense that only the parameters of the problems vary. Therefore, it is essential to find

a method to accelerate these calculations. The method we use, called the multipara-

metric strategy, was introduced in [8], then studied and applied to various sample

problems in [9, 10].

3.3.1 Principle of the method

The main idea of the multiparametric strategy is to take advantage of a feature of the

LATIN algorithm: at each iteration, the solver yields an approximate solution over the

whole loading path and at all points in the structure. Then, if a new calculation associ-

ated with other values of the parameters is requested, the algorithm can be reinitialized

using a previously converged solution. Figure 3 illustrates the use of the multipara-

metric strategy to obtain an approximate solution starting from a previous calculation.

Here, we assume that the only parameters which are different are the interface param-

eters, so space Γ alone is affected by the change.

Ad

Γ1
Γ2 Γ3

s1

s2

s1s3

Variation of parameters

Figure 3: The multiparametric strategy using the LATIN algorithm

With this approach, the solution converges in fewer iterations of the algorithm and,

therefore, in less time.

3.3.2 Illustration of the performance of the method

The example considered here is a quasi-static academic problem which was presented

in [10]. Figure 4 shows the geometry of the problem, which consists of three square

parts (h = 50mm, Young’s modulus E = 2 · 105MPa and Poisson’s coefficient

ν = 0.3) which are in contact with friction. Each part was represented by a single

substructure discretized into 24 × 24 bilinear quadrangles. The parametric study con-

sisted in varying the friction coefficients µ1 and µ2 of the two contact interfaces. The
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loading consisted of two stages: first, a progressive vertical pressure P1 up to a max-

imum of 50MPa applied at the top of substructure Ω3 (the preloading stage); then, a

progressive horizontal load from 0 to 30MPa applied to substructure Ω2.

h

h

j

Ω1

Ω2

Ω3

µ1

µ2
P2(MPa)

30

t

P1(MPa)

50

t

0

0.2

0.4

0.6
0

0.2
0.4

0.6

0

500

1,000

1,400

µ1

µ2

F

Figure 4: The geometry of the problem and the response surface

In this test case, variations of the friction coefficients µ1 and µ2 between 0 and 0.6
were considered, and the function studied was the reaction force on the rigid wall.

Figure 4 shows the response surface of this function obtained with 18 × 18 values of

the friction coefficients.

In order to illustrate the performance of the multiparametric strategy, the two-

variable design space was sampled with a 4 × 4 regular grid. For each sample, the

force and gradients were calculated (using a classical finite difference method for the

gradients). Table 1 summarizes the characteristics of these calculations:

The gain obtained with our method (compared to a classical calculation without the

multiparametric strategy) was estimated using the following expression:

Gain =
Number of calculations × CPU time of the first calculation

CPU time using the multiparametric strategy
(1)

We considered that the time of each calculation without the multiparametric strategy

was almost constant and equal to the time of the first calculation (8.2s).

The results presented in Table 1 show that the solver can reuse a previously con-

verged solution to accelerate the resolution of similar problems. The most remarkable

point is the gain obtained in the evaluation of the gradients. These were calculated

using a finite difference method: each gradient required the value of the response at 3

points (a sample point plus 2 points obtained by very small variations of the parame-

ters). The results show that for the same number of evaluations the cost was less when

the gradients were calculated along with the responses than when the responses alone
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Eval. Eval. gradients Total

Number of evaluations 16 2 × 16 48

Total CPU time 42.3s 58.1s 100.4s

Avg CPU time per calc. 2.7s 1.8s 2.1s

Min CPU time 0.2s 0.2 0.2

Max CPU time 8.2s 6s 8.2s

Nb. of iterations 1,896 2,580 4,476

Avg nb. of iterations (per calc.) 118.5 80.6 93.3

Min nb. of iterations 5 5 5

Max nb. of iterations 381 260 381

Gain 3.11 4.54 3.94

Table 1: The mechanical calculations using the multiparametric strategy

were calculated: in our example, 16 evaluations took 42.3s whereas 16 gradients (32
evaluations) took 58s. Thus, the strategy is particularly efficient in calculating the gra-

dients, thanks to the ability of the method to reduce the computation time for sample

points which are close together. This led to our decision which was to use a dedicated

gradients metamodel.

4 The cokriging metamodel

This type of metamodel is similar to the kriging metamodel proposed by [11] and

developed by [12, 13]. The cokriging strategy stems from multivariate geostatistics

[14]. In our case, the cokriging metamodel is built using not only the responses, but

also their gradients.

4.1 Notations

In this section, we will use the following notations: x
(i) denotes a point in the design

space D (x(i) is one of the ns sample points, while x
(0) is a non-sample point); xi

denotes the ith coordinate of a point x; Y (x) and Ỹ (x) denote respectively the re-

sponse of the analytical function (or the response of the mechanical model) and the

approximate response given by the metamodel; finally, R(x(i),x(j)) is a correlation

function.

4.2 Principle

The model can be viewed as the sum of two components: a linear model (which rep-

resents the trend of the data) and a departure from the linear model (which represents

the fluctuations around the trend).

Ỹ (x(0)) = µ(x(0)) + Z(x(0)), ∀x(0) ∈ D (2)
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E(Z) = 0, Cov[Z
(
x

(i)
)
, Z
(
x

(i)
)
] 6= 0, ∀

(
x

(i),x(j)
)
∈ D2 (3)

where E and Cov denote the classical statistical expected value and covariance.

The main idea is to consider a covariance relation between the discrete responses of

the deterministic function. This covariance depends only on the distances among the

samples. Thus the departure is represented by a zero-mean, second-order stationary

process. (The mean and the variance are constant, with a correlation depending on the

distance.) Depending on the definition of the function µ, one can build different types

of kriging or cokriging metamodels (simple kriging, where µ is the average of the

response at sample design points; ordinary kriging, where µ is an unknown constant;

or universal kriging, where µ is a polynomial function).

Function Z has a zero expected value and its covariance structure is a function of

a generalized distance among the sample responses. The covariance structure can be

written as:

∀
(
x

(i),x(j)
)
∈ D2, cov

[
Z
(
x

(i)
)
, Z
(
x

(j)
)]

= σ2R
(
x

(i),x(j)
)

= σ2cij (4)

In our case, the correlation function chosen is a Gaussian function or a Matérn function[15,

16].

In the case of a cokriging metamodel, additional covariance relations involving the

different variables are introduced [17]. In our case, the primary variables are the eval-

uations of the function being studied, and the secondary variables are the gradients:

Cov

[
∂Z

∂xk

(
x

(i)
)
, Z
(
x

(j)
)]

= −σ2 ∂R

∂xk

(
x

(i),x(j)
)

= σ2ckij (5)

Cov

[
Z
(
x

(i)
)
,
∂Z

∂xk

(
x

(j)
)]

= −σ2 ∂R

∂xk

(
x

(i),x(j)
)

= σ2ckij (6)

Cov

[
∂Z

∂xk

(
x

(i)
)
,
∂Z

∂xl

(
x

(j)
)]

= −σ2 ∂2R

∂xk∂xl

(
x

(i),x(j)
)

= σ2ckilj (7)

With this relation, one can also build the kriging or cokriging metamodel by con-

sidering the following linear predictors of the non-sample point x(0):

Kriging Ỹ
(
x

(0)
)

=
ns∑

i=1

λi

(
x

(0)
)
Y
(
x

(i)
)

Cokriging Ỹ
(
x

(0)
)

=
ns∑

i=1

λ0i

(
x

(0)
)
Y
(
x

(i)
)

+

nd∑

j=1

ns∑

i=1

λij

(
x

(0)
) ∂Y

∂xj

(
x

(i)
)

Thus, the determination of the Best Linear Unbiased Predictor (BLUP) leads to the

λ’s which, for a kriging metamodel, minimize the Mean Square Error:

MSE
[
Ỹ (x(0))

]
= E



(

ns∑

i=1

λi

(
x

(0)
)
Yi − Y

(
x

(0)
)
)2

 (8)

7



subject to the unbiasedness condition:

E

[
ns∑

i=1

λi

(
x

(0)
)
Y
(
x

(i)
)
]

= E
[
Y
(
x

(0)
)]

(9)

The construction of a cokriging metamodel follows the same process.

In the universal kriging case, the best linear predictor of Y
(
x

(0)
)

can be written in

matrix form [18] as:

Ỹ
(
x

(0)
)

= x0
T β̂ + c

T
0 C

−1(Ys − Xβ̂) (10)

where

β̂ = (XT
C

−1
X)−1

X
T
C

−1
Ys

x0 =
[
f1

(
x

(0)
)

f2

(
x

(0)
)

· · · fk

(
x

(0)
)]

c0 =
[
c01 c02 · · · c0ns

]

(X)ij = fj

(
x

(j)
)

(C)ij = cij

The regressor vector β̂ is the generalized least-squares approximation of β. Thus,

the first part of Equation 10 is the generalized least-squares prediction at point x
(0).

The second part can be viewed as a correction of the generalized least-squares re-

sponse surface to obtain the interpolating kriging model.

The formulation of the cokriging metamodel is very similar to that of the kriging

metamodel. For simplicity’s sake, following the idea in [19], we propose to use only

an ordinary cokriging metamodel:

Ỹ
(
x

(0)
)

= β̂c + c
T
c0C

−1
c

(Ysc − Xcβ̂c) (11)

where

β̂c =(XT
c C

−1
c

Xc)
−1

X
T
c C

−1
c

Ysc

cc0 =
[
c01 c02 · · · c0ns

c110 c210 · · · cndns0

]

Xc =
[
1, 1, · · · , 1, 0, 0, · · · , 0

]T

Cc =

[
C Cd

Cd
T

Cdd

]
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and where

(C)ij = cij

(Cd)ij =




c111 c211 · · · cnd11 c121 · · · cndns

c112 c212 · · · cnd12 c122 · · · cndns2

c113 c213 · · ·
...

. . .
...

c11ns
· · · cndnsns




(Cdd)ij =




c1111 c1121 · · · c11nd1 c1112 · · · c11ndns

c2111 c2121 · · ·
...

...
. . .

cnd1nd1 cnd112 · · ·
. . .

cndns11 · · · cndnsndns




In the kriging case, vector Ys contains only the responses of the function at the

sample point, whereas in the cokriging case vector Ysc contains both the responses

and the gradients. With these formulations, the models can supply approximate re-

sponses of the actual function at all the points in the design space. In our case, we

consider the response of the function to be deterministic and we obtain both of the

interpolating models. This type of metamodel has other advantages: for example, it

provides statistical information (the expected value and the variance of the process).

Due to the use of the unbiasedness condition, the expected value of Ỹ is given by the

trend model µ and the mean square error of Ỹ [18]:

MSE
[
Ỹ
(
x

(0)
)]

= σ2

[
1 −

[
x0 c0

] [0 X
T

X C

] [
x0

c0

]]
(12)

This relation also holds in the cases of simple or ordinary kriging or cokriging

models, provided the appropriate forms of vectors and matrices x0, c0, X and C are

used.

4.3 Estimation of the parameters

The model’s parameters (such as the characteristic correlation length scale l, the vari-

ance σ of the random process Z or the regression coefficients) can be determined by

maximizing the likelihood [20]. In our case, we use this technique to determine l and

σ:

(l, σ2) = arg min
l,σ2

[
−

ns

2
log(2πσ2) −

1

2
log(|C(l)|) −

1

2
(Ys − Xβ̂)T

C(l)−1

(Ys − Xβ̂)
] (13)
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The variance σ2 can be determined analytically through the derivation of the likelihood

function:

σ̂2 =
1

ns

(Ys − Xβ̂)T
C(l)−1(Ys − Xβ̂) (14)

One can also use an optimizer to determine the value of the correlation length scale.

This method has some drawbacks [21, 22, 23]: in many cases with very few points, the

log-likelihood is monotonous; often, the correlation matrix is affected by conditioning

problems which make finding the minimum difficult. When such problems arise, one

sets the parameters (in particular the correlation length scale) to fixed values.

4.4 Analytical applications

In this section, we apply kriging and cokriging to one- and two-dimensional analytical

test functions. We will use the abbreviations OK and OCK to designate respectively

Ordinary Kriging and Ordinary CoKriging.

4.4.1 The one-dimensional test function

First, we applied the two types of metamodels to an analytical function, chosen to be

y(x) = exp(−x/10) cos(x) + x/10. We used 5 sample responses of the analytical

function to build the OK metamodel, and an additional 5 sample derivatives to build

the OCK metamodel. The correlation function was the Matérn function. The sample

points were obtained using Latin Hypercube Sampling.

0 2 4 6 8 10 12 14

−0.5

0

0.5

1

1.5

Real response

Sample reponses

CoKriging

Kriging

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

Real derivative

Sampled derivatives

Derivative of CoKriging

Derivative of Kriging

Figure 5: The ordinary kriging and cokriging metamodels and their derivatives

Figure 5 illustrates the capability of the cokriging metamodel to interpolate not

only the values of the responses, but also the sample derivatives. In this example, the

quality of the cokriging metamodel was better. This statement remained true as long

as we worked with only a few points. We can also observe that for a relatively smooth

function the kriging metamodel converges quickly toward a good approximation of

the real function when the number of points becomes large enough.
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The characteristics of the two metamodels are summarized in the following table:

R2 RAAE RMAE Q1 Q2 Q3

OK 0.4442 0.5036 1.726 0.4192 23.46 7.796 · 10−2

OCK 0.9719 0.1153 0.4087 2.351 · 10−2 1.186 3.940 · 10−3

Table 2: Characteristics of the two previous metamodels

Criteria RAAE and RMAE stand for Relative Average Absolute Error and Relative

Maximum Absolute Error. Criteria Qi, which compare the actual response and the

responses of the metamodels at nc points with nc >> ns, were calculated as follows:

Q1 = sup
i∈{1,2,...,nc}

ei

Q2 =
nc∑

i=1

ei

Q3 =
Q2

nc

where ∀i ∈ {1, 2, ..., nc}, ei =
(Y
(
x

(i)
)
− Ỹ

(
x

(i)
)
)2

sup
j∈{1,2,...,nc}

Y (x(j))
2

Based on the statistical information from the kriging and cokriging metamodels,

one can derive confidence intervals. The two diagrams of Figure 6 show the 95%
Confidence Intervals (CIs) obtained with Expression 15. In these types of metamodels,

the size of the confidence envelopes is determined mainly by the distance between

each pair of neighboring points.

CI±(x) = Ỹ (x) ± 2

√
MSE

[
Ỹ (x)

]
(15)

4.4.2 The two-dimensional test function

The same two types of metamodels were used to approximate an analytical function of

two variables. In order to illustrate the performance of the cokriging metamodel, we

chose a very bumpy function: the six-hump camel back function (∀(x1, x2) ∈ [−3, 3]×
[−2, 2], f(x1, x2) = (4− 2.1x2

1 +x4
1)x

2
1 +x1x2 + 4(x2

2 − 1)x2
2). The two metamodels

were constructed using 16 evaluations of the function for the kriging metamodel, and

an additional 16 evaluations of the gradients for the cokriging metamodel. In both

cases the correlation function was the Matérn function.

The characteristics of these two metamodels are given in Table 3.

For this 2D test function, the cokriging metamodel led to a relatively accurate ap-

proximation of the actual function using only a few sample points. Taking into account

11
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Figure 6: The confidence envelopes for the kriging and cokriging metamodels
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Figure 7: The actual function and its gradients (blue arrows)
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Figure 8: The kriging function and its gradients (blue arrows)
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Figure 9: The cokriging function and its gradients (blue arrows)

R2 RAAE RMAE Q1 Q2 Q3

OK 0.6991 0.4042 2.845 0.3946 13.192 1.466 · 10−2

OCK 0.9958 3.027 · 10−2 5.330 · 10−1 1.391 · 10−2 0.1824 2.027 · 10−4

Table 3: Characteristics of the two previous metamodels (Figure 8-9)

the gradients, we were able to develop more efficient approximate models. But for a

problem involving the evaluation of mechanical responses the computation cost for the

determination of ns responses and ns gradients is, of course, higher than that required

to obtain ns responses alone. (In the former case, due to the use of finite differences

to obtain gradients, the construction of the metamodel requires 3ns evaluations of the

mechanical model.)

Now let us take another approach: the idea is to build metamodels using the same

number of evaluations. In the following case, we used the same six-hump function,

but the kriging metamodel was constructed based on the responses at 27 sample points

(Figure 10), while the cokriging metamodel was still constructed using the responses

and the gradients at 9 sample points (Figure 11).

R2 RAAE RMAE Q1 Q2 Q3

OK 0.8175 0.2566 2.933 0.4195 8.001 8.890 · 10−3

OCK 0.8160 0.2580 2.541 0.3150 8.066 8.9627 · 10−3

Table 4: Characteristics of the two previous metamodels (Figure 10-11)

Table 4 shows that the quality of the prediction achieved with the two metamodels

was similar, but a very important advantage of the cokriging metamodel was that it

led to more zones where a minimum could be found than the kriging metamodel. If

the problem involved the calculation of mechanical responses, the computation cost

associated with the 9 points and their gradients, thanks to the multiparametric strategy

and as shown in Table 1, would be much lower than that associated with the 27 points.
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Figure 10: The kriging surface obtained with 27 responses (27 evaluations of the

function)
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Figure 11: The cokriging surface obtained with 9 responses and 9 gradients (27 eval-

uations of the function)

5 Application to a mechanical problem

In this section, we present the construction of the two previous metamodels (kriging

and cokriging) using the multiparametric strategy presented in the first part of this

paper and the actual responses of a mechanical model. The test case being considered

is the three-squares example presented in Page 4. We carried out two studies: one

with a fixed number of mechanical calls, and the other with a fixed quality of the

metamodels.

5.1 Case of a fixed number of mechanical calls

Both metamodels were constructed using 15 mechanical evaluations. The kriging

metamodel was determined using 15 values of the force, and the cokriging metamodel

was determined with 5 values of the force and 5 gradients. The sample points were

obtained through Latin Hypercube Sampling. Our calculations led to the following
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two response surfaces (Figures 12 and 13) to be compared with the actual response

surface of Figure 4:
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Figure 12: The kriging response surface of the three-squares test case (using 15 re-

sponses)
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Figure 13: The cokriging response surface of the three-squares test case (using 5
responses and 5 gradients)

Tables 5 and 6 show the characteristics of the calculations and of the metamodels.

In this case, the cokriging metamodel led to a much better approximation of the

mechanical model than the kriging metamodel. Moreover, this result was obtained at

a lower computation cost.

5.2 Case of a fixed metamodel quality

Another way to study the cost of the metamodels consists in constructing kriging

and cokriging metamodels with the same quality. For this study, we constructed the
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Gradients without with

Total CPU Time 44.3s 36.4s

Avg CPU Time (/calc) 2.95s 2.13s

Min CPU Time 0.6s 0.2s

Max CPU Time 8.8s 8.2s

LATIN iterations 2,031 1,611

Avg iterations (/calc) 135 107

Min iterations 25 5

Max iterations 411 391

Gain 2.97 3.40

Table 5: Characteristics of the mechanical calculations

R2 RAAE RMAE Q1 Q2 Q3

OK 0.9865 8.751 · 10−2 0.6624 2.746 · 10−2 0.3385 8.463 · 10−4

OCK 0.9822 0.1015 0.4024 1.014 · 10−2 0.4441 1.110 · 10−3

Table 6: Characteristics of the metamodels (OK: ordinary kriging/OCK: ordinary cok-

riging)

metamodels using sample points obtained through full factorial sampling. We chose

to build the kriging metamodel with 9× 9 samples and the cokriging metamodel with

3 × 3 and 5 × 5 samples. The results are shown in Table 7:

OK OCK OCK

9 × 9 3 × 3 5 × 5
Total CPU Time 154.7s 61.6s 127s

Avg CPU Time (/calc) 1.9s 2.3s 1.7s

Min CPU Time 0.2s 0.2s 0.2s

Max CPU Time 8.9s 8.1s 9.1s

LATIN iterations 6,576 2,731 5,436

Avg iterations (/calc) 81.2 101 72.5

Min iterations 5 5 5

Max iterations 381 381 381

Gain 4.65 3.53 5.39

R2 0.9878 0.9702 0.9942

RAAE 2.511 · 10−2 0.1234 5.147 · 10−2

RMAE 0.1442 0.5703 0.3243

Q1 1.301 · 10−3 2.036 · 10−2 6.585 · 10−3

Q2 3.044 · 10−2 0.7439 0.1450
Q3 7.610 · 10−5 1.860 · 10−3 3.626 · 10−4

Table 7: The metamodels constructed using full factorial sampling

5 × 5 full factorial sampling led to a cokriging metamodel with the same quality
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as the 9 × 9 kriging metamodel. As in the previous case with a fixed number of

mechanical calls, the cost with the cokriging metamodel was lower. In the case of

more complex problems and more parameters, one can expect even better gains.

6 Conclusion

In this paper, we associated a cokriging metamodel with a dedicated multiparamet-

ric strategy. These two elements enabled us to achieve a significant reduction in the

computation cost of constructing the metamodel.

Our multiparametric strategy takes advantage of a property of the LATIN method

which is that the result of a previous calculation constitutes an efficient starting point

for a subsequent calculation. This property is particularly advantageous for the eval-

uation of gradients, which are obtained using finite differences (i.e. with very small

variations of the parameters). Thus, our strategy lends itself naturally to the use of a

gradient-based metamodel such as the cokriging model presented in the paper.

Moreover, since this metamodel is part of a multilevel model optimization strategy,

besides reducing the computation cost associated with the construction of the cokrig-

ing metamodel, one can also reduce the cost of the second level, in which algorithms

based on gradient descent are used. This will be the subject of an upcoming work.
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