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Abstract 

The 3D finite element analysis of aluminum extrusion is 
challenging due to, amongst others, the advanced geome- 
tries, the large number of unknowns and the complex 
boundary conditions involved. In the present paper a 
mesh generator is presented that is capable of generat- 
ing meshes for complex geometries while reducing the re- 
sulting number of unknowns with directional refinement. 
With the meshes 3D thermo-mechanical computations are 
performed to determine the influence of the die geometry, 
in particular the bearing length, on the velocity with 
which the aluminum exits the die. Comparison of the 
computations with experiments reveals that,  eventhough 
the trends are correct, the influence of the bearing on the 
exit velocity is overestimated. 

1 Introduction 

In aluminum extrusion the quality of the produced profile 
is mainly determined by the shape of the die. The die 
shape depends on the shape of the pocket and the bearing 
(see Figure 1). The pocket serves to streamline the flow 
towards the die opening. The bearing balances the flow 
at the exit of the die and forms the aluminum into an 
intermediate shape that closely resembles the final shape. 
After cooling the profile obtains the final cross sectional 
shape. The shape of the pocket and the bearing are 
determined by the pocket opening and length, and the 
bearing opening and length, respectively. Moreover, the 
bearing length may vary along the circumference of the 
bearing opening for flow balancing purposes. 

perpendicular to the extrusion direction is negligible. The 
first condition ensures that the profile will be straight 
and the second that the cross section has the appropriate 
intermediate shape. 

Due to the complexity of the shape and flow balancing 
issues, the dies are designed in an iterative process. In this 
process the die design is adjusted, based on the results 
of trial-pressings and a re-tested. This is an expensive 
and time-consuming process. Therefore, numerical sim- 
ulation~ of flow through dies are of great interest since 
these can improve the design and reduce costs and time. 

1.1 Modeling Extrusion 

Extrusion is a thermo-mechanical process where plastic, 
incompressible deformations with low Reynolds numbers 
predominate. The differential equations describing the 
conservation of momentum, of mass, and of energy can 
be transformed into a (mechanical) Stokes problem (1)- 
(2) coupled with a (thermal) convection-diffusion problem 
(3). 

- v p + e . 2 7 7 0  = a  (1) 

where .ii represents the velocity, p the pressure, e the 
gradient operator, 7 the viscosity, D = ;(e.ii+($~)~) the 
rate of deformation tensor, p the density, c, the specific 
heat, T the temperature and X the Fourier constant. 

The thermal and the mechanical problem are coupled 
through the viscosity of the aluminum 7 which is depen- 
dent on the strain rate + = d- and the temperature 
T .  This dependency is generally expressed using a Zener- 
Hollomon parameter Z [l]: 

Q 7 = (CZm)/(y) with Z = +exp(-) 
RT (4) 

with C and m material parameters, Q the specific heat, 
and R the gas constant. 

The stokes problem is discretized using the MINI- 
Figure 1: Extrusion element [2, 31. The MINI-element is a tetrahedral el- 

ement which can be characterized by a linear pressure 
For extrusion the flow is optimally balanced if the field combined with a linear velocity field that is enriched 

velocity of the aluminu~n in extrusion direction is con- with a bubble function. For the discretization of the 
stant over the profile cross section, and if the velocity temperature problem a linear tetrahedral element will be 



used. The system of coupled mechanical and thermal 2.1 Generating the 2D mesh 
systems of equations that result after discretization are 
solved decoupled using iterative solvers. 

Many methods exist to compute the flow of aluminum 
through dies. For instance, one can consider the profile 
to be a collection of simple geometries and determine 
analytical solutions for the flow field in the simple ge- 
ometries [4], while possibly taking into account material 
interaction between the geometry parts. The solutions 
for the simple geometries could also be obtained from 
2D finite element calculations [5]. However, the proposed 
methods fail for complex profiles because the interaction 
between the various geometry parts becomes too complex. 
This deficiency necessitates the use of 3D finite element 
calculations but these have been restricted to relatively 
simple geometries such as tubes [6] and squares [7]. 

Many challenges arise from the 3D finite element of 
complex profiles. First, the complex die geometries are 
difficult to mesh. Second, the complexity of the die ge- 
ometries necessitates the use of fine meshes with a large 
number of elements, which implies computational prob- 
lems due to the large number unknowns. Third, the 
boundary conditions in the die are complex and it is dif- 
ficult to asses how these should be modeled. 

2 Mesh Generation 

The meshing can be simplified by using an expansion 
technique. Within the pocket and the bearing, the cross 
section perpendicular to the extrusion direction does not 
change. Therefore, after a 2D mesh has been generated 
for these cross sections, the 3D volume mesh can be ob- 
tained by expansion in extrusion direction. This way the 
3D meshing of a complex volume is reduced to the 2D 
meshing of complex surfaces. 

Furthermore, the cross section area of the aluminum 
is reduced to about one percent from billet to bearing 
which causes the length scales near the ram to be much 
larger than those close to the die. Therefore it is desirable 
to have a fine mesh in the billet near the pocket and a 
coarse mesh near the ram. This is achieved by using an 
unstructured mesh generator. 
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In extrusion the flow field is characterized by varying 
length scales. The profiles are often thin walled which 
implies that the length scale along the profile wall is much 
larger than perpendicular to the wall. This property of 
the flow field is exploited in the 2D inesh by using direc- 
tional refinement. 

Several methods exist to generate directionally refined 
meshes for the domains in Figure 2. These methods can 
be split in mapped and unstructured procedures. Here 
an unstructured mesh generator is applied because it is 
better suitable for complex domains. 

Unstructured mesh generators can globally be split 
up into two classes, Delaunay triangulation type gener- 
ators [8] and paving or plastering generators [g]. De- 
launay type generators construct grids between just the 
boundary nodes of the domain. Since this often generates 
very low-quality elements, points are added to the interior 
of the domain in order to meet quality criteria for the 
mesh. Gobeau et al. [l01 introduced a version of such 
a generator that rendered meshes with a directional re- 
finement, by defining different quality criteria for different 
directions. However, for complex geometries the direction 
of the refinement varies throughout the domain, which 
causes complications. 

Therfore, here a paving generator [g] is used. Paving 
consists of proceeding along the boundary between the 
gridded and the ungridded part of the domain, adding 
one element layer a t  a time. An advantage of paving 
over a Delaunay type generator [8] is that the thickness 
of each layer car1 be controlled to render meshes that are, 
for instance, more refined in a direction perpendicular to 
the boundary than parallel. This makes it possible to deal 
with a varying direction of refinement in a straightforward 
manner. 

2.1.1 The Paving Algorithm 

The paving algorithm consists of the following steps (see 
also Figure 3(a)-(f)): 

(a) Process the input data 

(-) Repeat 

(b) Generate triangles using existing nodes on 
the current boundary 

(c) Add a layer of quadrilaterals that are split 
into triangles 

(d) Merge nodes on the new boundary that are 
close 

(e) Until entire domain is meshed 

(f) Smooth the mesh to improve the element geometry 

2.1.2 Paving the Bearing, Pocket and Billet Sur- 
face 

To reduce meshing effort and achieve connectivity be- 
Figure 2: Relevant perpendicular cross sections for simple tween the volumes of the mesh after expansion, the pocket 
profile opening surface is constructed out of the bearing opening 



2.1.3 Example of a Complex Profile 

An example of a more complex profile can be seen in 
Figure 5. The profile that is meshed is used in electronic 
devices for cooling purposes. 

(a) Input data (b) Using exist- (c) Adding a 
ing nodes layer 

(d) Merging (e) Entire do- (f) Smoothing 
close nodes main meshed 

Figure 3: The principle of paving 

surface and the pocket remainder surface. 'Similarly the 
billet surface is constructed out of the pocket opening sur- 
face and the billet remainder surface. The (compatible) 
meshes filling the three areas distinguished in Figure 2 are 
depicted in Figure 4. 

(a) Bearing opening (b) Pocket remainder 

(c) Billet remainder 

Figure 4: Meshes of billet, pocket opening and die opening 

Figure 5: Directionally refined mesh of a complex profile 

2.2 Expanding the 2D Mesh to a 3D mesh 

The 2D surface meshes of the bearing and the pocket in 
Figure 4 are expanded in the extrusion direction to obtain 
3D volumes of the pocket, and the bearing. The expan- 
sion is performed in two steps. First prisms are created 
from the triangles. Then the prisms are subdivided into 
tetrahedra. 

2.2.1 Generating Prisms 

The prisms are created by copying the triangles from the 
surface meshes and translating them over a prescribed 
distance to render a new layer of triangles. By varying the 
translation distance of each layer longitudinal refinement 
can be achieved. The triangles from the two layers are 
combined to render prisms (see Figure 6). This is repeated 
until the complete volume is filled. 

Triangle Copy, translate Prism 

Figure 6: Generating prisms 



2.2.2 Subdividing Prisms into Tetrahedra 

Next the prisms are split into tetrahedra. This split has 
to be performed such that the diagonals introduced on 
the rectangular faces of the prisms match for adjacent 
prisms. The split of a prism into three tetrahedra can 
only be performed if the diagonals of these faces are not 
all oriented in the same way (see also Figure 7). 

correct incorrect 

1 down-up 1 down-up 
2 up-down 2 down-up 
3 down-up 3 down-up 

Figure 7: Diagonal definition on prisms 

An algorithm is used to set the orientation of the 
diagonals in a pattern that meets the requirements. First, 
the diagonals of the faces that lie on the boundary are 
set. Then a loop over the prisms is performed and for the 
prisms with the orientation of the diagonals defined on 
one or two faces an additional face diagonal is selected. 
The orientation is chosen such that the diagonals of this 
prism and that of the prism that shares the face do not 
violate the orientation criterion. If it is not possible to 
satisfy the orientation criterion for both prisms (if both 
prisms already have two faces set and the criterion re- 
quires different orientations on their mutual face) the ori- 
entation of the diagonal is set such that the current prism - 
is adequate. This loop is repeated until the diagonals of 
all the faces are set. After this, those prisms which do 
not meet the orientation criterion are removed with an 
algorithm similar to that of Lohner [ l l ] .  This algorithm 
locates these prisms and changes the orientation of one of 
the diagonals. To avoid infinite loops the orientation of 
each diagonal can be altered only once. 

Given the orientation of the diagonals the prism can 
be subdivided into three tetrahedra (see Figure 8). 

Prism Diagonals 3 tetrahedra 

Figure 8: Splitting a prism into 3 tetrahedra 

2.3 Stretching the Bearing 

In the mesh generated in the previous section the bear- 
ing has a constant length however, in reality the bearing 
length may vary over the bearing boundary. The varying 
bearing length will influence the mesh in both the bearing 

and the outflow volume. Here the adaptation of the bear- 
ing volume is discussed but the same method is applied 
to the free flow volume. 

Figure 9: Bearing exit surface for constant bearing length 

The nodes on the boundary of the bearing exit surface 
are translated over the distance between the current (con- 
stant) bearing length and the actual bearing length. The 
positions of the other nodes in the surface are obtained 
by interpolation between the nodes on the boundary (see 
Figure 10). It is beyond the scope of this paper to discuss 
the interpolation method, therefore the interested reader 
is referred to Tezduyar et al. [l21 and Johnson and Tez- 
duyar [13]. 

Figure 10: Bearing exit surface for varying bearing length 

The bearing mesh is smoothed by repositioning the 
nodes between the the bearing opening surface and the 
bearing exit surface. The new positions of the nodes are 
obtained by interpolation between the two surfaces. The 
resulting mesh is depicted in Figure 11. 

Figure 11: Smoothed bearing mesh 

2.4 The Resulting 3D Mesh 

The 3D mesh in Figure 12 is constructed out of the 3D 
meshes of the free flow, the bearing, the pocket, and the 
billet volumes. The free flow, the bearing, and the pocket 
meshes are obtained by expanding the paved meshes in 
extrusion direction. Because the flow field has the shortest 
length scales in the bearing, the thickness of the layers is 
selected to be the smallest there. After expansion the 
bearing mesh is stretched to the actual bearing length. 



Clearly, the free flow mesh has to  be stretched as well 
to ensure connectivity of the mesh on the bearing exit 
surface. The billet mesh is obtained using an unstructured 
mesh generator which is capable of generating prisms with 
high aspect ratio's near the pocket opening and coarsening 
the mesh away from the pocket opening. 

Outflow 
Die exit 
Bearing 
Pocket 

Billet 

Figure 12: The surface meshes used to  generate a 3D mesh 
for FE analysis of extrusion 

3 Flow Calculations 

A 3D mesh similar to the mesh in Figure 12 is used to 
perform coupled thermo-mechanical computations. Three 
different bearing configurations are modeled (see also Fig- 
ure 13). For the first (a) the bearing is longer in the 
center of the profile, for the second (b) the bearing length 
is constant, and for the third (c) the bearing is shorter in 
the center. 

For each of the bearing configurations the velocity field 
and the temperature field are determined. The results 
of the computations are used to  investigate the influence 
of the bearing length on the temperature and the veloc- 
ity field. Additionally, the exit velocity distributions are 
compared to physical experiments that were performed 
on an industrial extrusion press with a die that contained 
a bearing configuration resembling the one depicted in 
Figure 13(a). 

3.1 Boundary Conditions 

For the boundary conditions in the mechanical problem a 
constant velocity is defined on the inflow surface (i.e. the 
ram surface). Also it was assumed that the aluminum 
would stick to  the container and the die surface while at 
the outflow boundaries the surface stress was assumed to 
be zero. For the thermal problem a constant tempera- 
ture was prescribed on the inflow surface while the other 
surfaces were modeled to be thermally insulated. 

(a) Longer in center 

(b) Constant length 

( c )  Shorter in center 

Figure 13: Bearing configuration meshes (mesh of the 
outflow is omitted for clarity) 

3.2 Computing the Velocity and Temper- 
ature Field 

The mesh contained 60.000 d.0.f. for the mechanical and 
15.000 d.0.f for the thermal problem. For both prob- 
lems an iterative BiCGStab [l41 solver was employed. On 
average 4000 BiCGStab iterations were needed for the 
mechanical problem. Around 200 BiCGStab iterations 
were needed for the thermal problem. 

The thermal and mechanical problem were solved de- 
coupled in an iterative loop. In this loop first the viscosity 
was determined in every point of the domain for a given 
velocity and temperature field. Then the Stokes problem 
was solved with this viscosity distribution. Next, the 
resulting velocity field was used to  determine the viscous 
dissipation in every point of the domain. Last, the vis- 
cous dissipation was used to solve the thermal convection- 
diffusion equation. On average ten thermo-mechanical 



loops were needed to converge to a stable velocity and 
temperature field. 

3.3 Results 

Trrw 

(a) Longer in center 

V m u  
T min 

(a) Longer in center 

Trrw Vmin=O 

(b) Constant length 

V mm 

T min 

(b) Constant length 

T max 
Vnun=O 

(c) Shorter in center 

Figure 15: Velocities in extrusion direction inside bearing 

T min 

larger than that in (b), which causes the overall temper- 

(c) Shorter in center 

Figure 14: Temperature contours for different bearing 
configurations 

In Figure 14 the temperatures are plotted for the dif- 
ferent bea.ring configura.tions. In Figure 15 the exit ve- 
locities in the extrusion direction are plotted inside the 
bearing. 

In Figure 14 it can be observed that the bearing length 
has a negligible influence on the temperature in the profile 
(T max - T min = 150°C). It should be noted that the 
average bearing length in configuration (a) and (c) is 

ature to be slightly higher in (a) and (c). 

From Figure 15 it can be concluded that the bearing 
length influences the exit velocity distribution consider- 
ably. The velocities at the boundary of the profiles are 
equal (zero) for every bearing configuration due to the 
stick assumption, however in the middle of the profile 
the velocity distribution is influenced by the length of 
the bearing. For the configurations (b) and (c) the exit 
velocities are higher in the center of the profile than a t  
the ends. For configuration (a) the velocities are higher 
a t  the ends. These results concur with the observed trends 
in practice. 

The influence of the bearing length on the exit ve- 
locities is larger than what was observed in the exper- 



iment. In the experiment, where a die with a bearing 
length variation as indicated in Figure 13(a) was used, the 
aluminum exited the die in a straight line which indicates 
a constant exit velocity. However, in the simulations the 
exit velocity is higher a t  the ends of the profile than in the 
center for configuration(a). Since the opposite is true for 
configuration(b) this suggests that the optimal bearing 
configuration is in between (a) and (b). Actually, since 
configuration (b) gives a more uniform exit velocity profile 
this would indicate that the optimal bearing configuration 
is closer to (b) than (a). This is does not in agreement 
with the experiments. This discrepancy between the ex- 
periments and the computations is most likely caused 
by the assumption of pure stick that was made when 
modeling the aluminum die interaction. 

4 Conclusion 

With the combination of the mesh generator, the MINI- 
element and the iterative solver it is possible to  analyze 
complex profiles using the finite element method. How- 
ever, several issues remain. 

One issue is the adequate modeling of the aluminum- 
die interaction in the bearing area. The current assump- 
tion that the aluminum sticks to the bearing renders un- 
satisfactory results. Therefore a more elaborate model is 
necessary that incorporates this interaction adequately. 
One possibility that is currently being investigated is the 
modeling of Coulomb friction. 

Another issue is associated with the large number of 
iterations in the BiCGStab solver to obtain the velocity 
field. These iterations are caused by ill-conditioning of 
the matrix for which the matrix-vector equation is being 
solved. The ill-conditioning is caused by the high aspect 
ratio's of the tetrahedra in the mesh. Additionally, the 
viscosity can range over 6 to 8 decades from very high 
viscosity near the ram to a very low viscosity in the shear 
bands near the bearing. These large differences in viscos- 
ity throughout the domain worsen the conditioning of the 
matrix. 

The ill-conditioning of the matrix is not a problem for 
direct solvers. However, for direct solvers it is impossible 
to solve very large systems due to memory limitations. 
This can be solved by using a domain decomposition tech- 
nique because this makes it possible to apply a direct 
solver on the smaller systems associated with each of the 
sub-domains. Currently such an approach is being imple- 
mented. 
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